嗤笑什么意思| 科技布是什么材质| 男人结扎对身体有什么影响| 乳铁蛋白对宝宝有什么好处| 怀孕做无创是查什么| 乙肝五项25阳性是什么意思| feel什么意思| 脚浮肿是什么原因| 胃发胀是什么原因| 花团锦簇是什么意思| 猕猴桃什么季节成熟| 城镇户口是什么意思| 珍珠有什么功效| 贫血吃什么东西好| ga是什么| 不割包皮有什么影响| 公积金缴存基数是什么意思| 头皮毛囊炎用什么洗发水| 姨妈安全期是什么时候| 稷是什么意思| 蒲公英泡水喝有什么功效| 饭前吃药和饭后吃药有什么区别| 辣椒油用什么能洗掉| 关节积液是什么原因造成的| 人身体缺钾是什么症状| 三价铁离子什么颜色| 经常流鼻血是什么原因引起的| 舒克是什么职业| 龟龄集适合什么人吃| 雷替斯和优甲乐有什么区别| 膝跳反射属于什么反射| 阑尾炎打什么消炎针好| 他达拉非片是什么药| 红疮狼斑是什么引起的| 醋泡黑豆有什么功效| 冰箱双变频是什么意思| Ca是什么| 动物的耳朵有什么作用| 热毛巾敷眼睛有什么好处| 高血压吃什么可以降下来| 什么是世界观| 吃什么食物补血| 尿蛋白定量是什么意思| 堃是什么意思| 子宫内膜6mm意味着什么| 介入科主要看什么病| 食管挂什么科| 处级干部是什么级别| 拜有利主要是治疗什么| 胃酸反流是什么原因| 2023年属兔的是什么命| 结节影是什么意思| 寡欲是什么意思| 肺纤维化是什么症状| 69是什么| 游离甲状腺素偏低是什么意思| 脑缺血吃什么药| 什么血型最招蚊子| 韭菜不能和什么一起吃| 大黄鸭是什么牌子| 扁桃体肿大吃什么药好| 胃肠感冒吃什么药| 人参不能和什么一起吃| 棘人是什么意思| 吃什么降低尿酸| 鱼油不适合什么人吃| 桃皮绒是什么面料| 812是什么意思| 天地人和是什么意思| 龟头起红点用什么药| 炒菜放什么调料最好吃| 醛固酮高有什么危害| 刀口力念什么| 什么叫透析| 乳腺增生样改变是什么意思| 长疣是什么原因| 每天拉肚子是什么原因引起的| 什么是总胆固醇| 女性排卵期出血是什么原因| 莓茶什么人不适合喝| 爱因斯坦是什么学家| 转氨酶偏高是什么意思| 手指上长毛是什么原因| 庭字五行属什么| 背疼挂什么科室最好| 右手有点麻是什么原因| 新生儿呛奶是什么原因引起的| 纵欲过度是什么意思| 显现是什么意思| 做包皮手术有什么好处| 韩国为什么叫韩国| 置换是什么意思| 脾胃不和吃什么药| 什么样的女人最吸引男人| 看得什么| 忌口是什么意思| 指甲盖发紫是什么原因| 封建思想是什么意思| 缺氯有什么症状怎么补| 2006年是什么年| 6月12日是什么星座| 莫名心慌是什么原因| 女生心脏在什么位置| 基础代谢是什么意思| 什么是风水| 2003是什么年| 检验葡萄糖用什么试剂| 好整以暇什么意思| 精神是什么意思| 血清果糖胺测定是什么| 中性粒细胞是指什么| 干什么能挣钱快| 散佚是什么意思| 毕业花束选什么花| 男士175是什么码| 五香粉是什么| 卵黄囊是什么| 4.29是什么星座| 颈椎病用什么药| 蜘蛛的血是什么颜色的| 矿物油是什么油| 草木皆兵指什么生肖| 榄仁叶是什么树的叶子| 为什么手麻| ppi是什么药| 什么树枝| 什么的看| 浪凡算是什么档次的| 平坦的反义词是什么| 动脉硬化用什么药好| 检查痛风挂什么科| 狗奴是什么意思| 什么是拘役| 伤口发炎化脓用什么药| 5月出生是什么星座| 明天什么考试| 眉眼是什么意思| 压迫感是什么意思| 什么是应力| 爆竹声中一岁除下一句是什么| 舒筋健腰丸主治什么| 闭麦是什么意思| 鸿运当头是什么菜| 龙傲天是什么意思| 女人喝黄连有什么好处| md是什么材质| 肾看什么科| 什么不足| 前列腺增生是什么原因引起的| 皮肤过敏挂什么科| 斑是什么原因造成的| 阿拉伯人是什么种人| 胆囊炎吃什么| 办理户口迁移需要什么材料| 电瓶车充不进电是什么原因| 植树节什么时候| 应届生是什么意思| 否是什么意思| 胃胀是什么原因导致的| 公主切适合什么脸型| 酷暑难当是什么意思| 膳食纤维是什么| 女性尿路感染吃什么药好得快| 虾仁可以炒什么菜| 痔疮有什么特效药| 姐姐的孩子叫什么| hl是胎儿的什么| 碧字五行属什么| 泊字五行属什么| 十二指肠溃疡吃什么中成药| 8月31日什么星座| 结婚50年是什么婚| 姌是什么意思| 外阴裂口用什么药| 三伏天从什么时候开始| 智商120是什么水平| 肺燥吃什么中成药| 抹茶绿配什么颜色好看| 免疫十一项都检查什么| 肺结核吃什么好| 境内是什么意思| 为什么海藻敷完那么白| resp是什么| 女孩的英文是什么| 喉咙有痰是什么原因| 梦见和亲人吵架是什么意思| 点痦子去医院挂什么科| 10月1日是什么日子| 拉肚子吃什么水果| 睡醒嘴巴苦是什么原因| 高光是什么意思| 宫颈转化区三型是什么意思| 辛属什么五行| 中医康复技术学什么| 官星是什么意思| 医德是什么| 麻雀长什么样| 吃什么药能减肥| 切除子宫对身体有什么影响| 眼底筛查是检查什么| 孕妇吃什么利尿排羊水| 做完手术吃什么水果好| 流鼻血吃什么好| 六块钱的麻辣烫是什么意思| 食禄痣是什么意思| 犟驴是什么意思| 夏至为什么吃馄饨| 胃不好的人吃什么养胃| 螺蛳粉为什么那么臭| 中位数什么意思| 言字旁的字和什么有关| 农历六月十三是什么星座| 神经衰弱什么症状| 腿肚子抽筋是什么原因| 218是什么星座| 拔智齿当天可以吃什么| 一直腹泻是什么原因| 解构是什么意思| 孙膑是什么学派| 排卵期同房后要注意什么| 什么东西降火| 什么时候人流| 谷草转氨酶偏低是什么意思| 勇者胜的上半句是什么| 经行是什么意思| 疗愈是什么意思| 便秘有什么症状| 打饱嗝是什么原因造成的| 蓝字五行属什么| 王八蛋是什么意思| 天秤座有什么特点| 兰州有什么好吃的| 秦始皇是芈月的什么人| as是什么材质| 淋巴结肿大用什么药| 调岗是什么意思| 经期适合吃什么| 看望病人送什么花| 什么药去湿气最好最快| 测血糖挂什么科| 头发痒是什么原因| o是什么牌子| 肺气虚吃什么中成药| 戊戌是什么意思| 医院手环颜色代表什么| 高压是什么意思| 口苦口干吃什么药好| 向晚的意思是什么| 一元硬币是什么材质| 巨是什么结构| 守宫是什么意思| 什么是积| 冰种翡翠属于什么档次| 中枢是什么意思| 12月21是什么星座| 保育员是什么| pw是什么意思| 鳞状上皮炎症反应性改变是什么意思| 戴玉对身体有什么好处| 带状疱疹看什么科| 大胯疼是什么原因引起| 子宫偏大是什么原因| 山本耀司的品牌叫什么| 青色是什么颜色的图片| 百度Jump to content

陕西交通集团商界分公司商洛东管理所提早部署“

From Wikipedia, the free encyclopedia
This is the current revision of this page, as edited by OAbot (talk | contribs) at 01:34, 28 May 2025 (Open access bot: url-access updated in citation with #oabot.). The present address (URL) is a permanent link to this version.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
百度   新时代要有新气象新作为,落实中央八项规定和实施细则精神要有新局面,必须坚持高标准严要求,坚持越往后执纪越严。

Language identification in the limit is a formal model for inductive inference of formal languages, mainly by computers (see machine learning and induction of regular languages). It was introduced by E. Mark Gold in a technical report[1] and a journal article[2] with the same title.

In this model, a teacher provides to a learner some presentation (i.e. a sequence of strings) of some formal language. The learning is seen as an infinite process. Each time the learner reads an element of the presentation, it should provide a representation (e.g. a formal grammar) for the language.

Gold defines that a learner can identify in the limit a class of languages if, given any presentation of any language in the class, the learner will produce only a finite number of wrong representations, and then stick with the correct representation. However, the learner need not be able to announce its correctness; and the teacher might present a counterexample to any representation arbitrarily long after.

Gold defined two types of presentations:

  • Text (positive information): an enumeration of all strings the language consists of.
  • Complete presentation (positive and negative information): an enumeration of all possible strings, each with a label indicating if the string belongs to the language or not.

Learnability

[edit]

This model is an early attempt to formally capture the notion of learnability. Gold's journal article[3] introduces for contrast the stronger models

  • Finite identification (where the learner has to announce correctness after a finite number of steps), and
  • Fixed-time identification (where correctness has to be reached after an apriori-specified number of steps).

A weaker formal model of learnability is the Probably approximately correct learning (PAC) model, introduced by Leslie Valiant in 1984.

Examples

[edit]
4. Complete presentation
by request
Teacher Learner's
Guess Query
0. abab
1. yes abab baba
2. yes a*(ba)*b* aa
3. no (ab)*(ba)*(ab)*(ba)* bababa
4. yes (ab+ba)* babb
5. no (ab+ba)* baaa
... ...
3. Complete presentation
by telling
Teacher Learner
1. abab abab
2. baba a*(ba)*b*
3. aa (ab)*(ba)*(ab)*(ba)*
4. bababa (ab+ba)*
5. babb (ab+ba)*
6. baaa (ab+ba)*
7. ε (ab+ba)*
... ...
2. Union-guessing
 
Teacher Learner
1. abab abab
2. ba abab+ba
3. baba abab+ba+baba
4. ba abab+ba+baba
5. baba abab+ba+baba
6. abab abab+ba+baba
7. ε abab+ba+baba
... ...
1. Text presentation
 
Teacher Learner
1. abab abab
2. baba abab+baba
3. baabab (b+ε)(ab)*
4. baabab (b+ε)(ab)*+baabab
5. abbaabba (ab)*(ba)*(ab)*(ba)*
6. baabbaab (ab+ba)*
7. bababa (ab+ba)*
... ...

It is instructive to look at concrete examples (in the tables) of learning sessions the definition of identification in the limit speaks about.

  1. A fictitious session to learn a regular language L over the alphabet {a,b} from text presentation:
    In each step, the teacher gives a string belonging to L, and the learner answers a guess for L, encoded as a regular expression.[note 1] In step 3, the learner's guess is not consistent with the strings seen so far; in step 4, the teacher gives a string repeatedly. After step 6, the learner sticks to the regular expression (ab+ba)*. If this happens to be a description of the language L the teacher has in mind, it is said that the learner has learned that language.
    If a computer program for the learner's role would exist that was able to successfully learn each regular language, that class of languages would be identifiable in the limit. Gold has shown that this is not the case.[4]
  2. A particular learning algorithm always guessing L to be just the union of all strings seen so far:
    If L is a finite language, the learner will eventually guess it correctly, however, without being able to tell when. Although the guess didn't change during step 3 to 6, the learner couldn't be sure to be correct.
    Gold has shown that the class of finite languages is identifiable in the limit,[5] however, this class is neither finitely nor fixed-time identifiable.
  3. Learning from complete presentation by telling:
    In each step, the teacher gives a string and tells whether it belongs to L (green) or not (red, struck-out). Each possible string is eventually classified in this way by the teacher.
  4. Learning from complete presentation by request:
    The learner gives a query string, the teacher tells whether it belongs to L (yes) or not (no); the learner then gives a guess for L, followed by the next query string. In this example, the learner happens to query in each step just the same string as given by the teacher in example 3.
    In general, Gold has shown that each language class identifiable in the request-presentation setting is also identifiable in the telling-presentation setting,[6] since the learner, instead of querying a string, just needs to wait until it is eventually given by the teacher.

Gold's theorem

[edit]

More formally,[7]

  • a language is a nonempty set, and its elements are called sentences.
  • a language family is a set of languages.
  • a language-learning environment for a language is a stream of sentences from , such that each sentence in appears at least once.
  • a language learner is a function that sends a list of sentences to a language.
    • This is interpreted as saying that, after seeing sentences in that order, the language learner guesses that the language that produces the sentences should be .
    • Note that the learner is not obliged to be correct — it could very well guess a language that does not even contain .
  • a language learner learns a language in environment if the learner always guesses after seeing enough examples from the environment.
  • a language learner learns a language if it learns in any environment for .
  • a language family is learnable if there exists a language learner that can learn all languages in the family.

Notes:

  • In the context of Gold's theorem, sentences need only be distinguishable. They need not be anything in particular, such as finite strings (as usual in formal linguistics).
  • Learnability is not a concept for individual languages. Any individual language could be learned by a trivial learner that always guesses .
  • Learnability is not a concept for individual learners. A language family is learnable iff there exists some learner that can learn the family. It does not matter how well the learner performs for learning languages outside the family.

Gold's theorem (1967) (Theorem I.8 of (Gold, 1967))If a language family contains , such that and , then it is not learnable.

Proof

Suppose is a learner that can learn , then we show it cannot learn , by constructing an environment for that "tricks" .

First, construct environments for languages .

Next, construct environment for inductively as follows:

  • Present with until it outputs .
  • Switch to presenting with alternating the rest of and the entirety of . Since , this concatenated environment is still an environment for , so must eventually output .
  • Switch to presenting the rest of and the entirety of alternatively.
  • And so on.

By construction, the resulting environment contains the entirety of , thus it contains , so it is an environment for . Since the learner always switches to for some finite , it never converges to .

Gold's theorem is easily bypassed if negative examples are allowed. In particular, the language family can be learned by a learner that always guesses until it receives the first negative example , where , at which point it always guesses .

Learnability characterization

[edit]

Dana Angluin gave the characterizations of learnability from text (positive information) in a 1980 paper.[8] If a learner is required to be effective, then an indexed class of recursive languages is learnable in the limit if there is an effective procedure that uniformly enumerates tell-tales for each language in the class (Condition 1).[9] It is not hard to see that if an ideal learner (i.e., an arbitrary function) is allowed, then an indexed class of languages is learnable in the limit if each language in the class has a tell-tale (Condition 2).[10]

Language classes learnable in the limit

[edit]
Dividing lines between identifiable and nonidentifiable language classes[11]
Learnability model Class of languages
Anomalous text presentation[note 2]
Recursively enumerable
Recursive
Complete presentation
Primitive recursive[note 3]
Context-sensitive
Context-free
Regular
Superfinite[note 4]
Normal text presentation[note 5]
Finite
Singleton[note 6]

The table shows which language classes are identifiable in the limit in which learning model. On the right-hand side, each language class is a superclass of all lower classes. Each learning model (i.e. type of presentation) can identify in the limit all classes below it. In particular, the class of finite languages is identifiable in the limit by text presentation (cf. Example 2 above), while the class of regular languages is not.

Pattern Languages, introduced by Dana Angluin in another 1980 paper,[12] are also identifiable by normal text presentation; they are omitted in the table, since they are above the singleton and below the primitive recursive language class, but incomparable to the classes in between.[note 7][clarification needed]

Sufficient conditions for learnability

[edit]

Condition 1 in Angluin's paper[9] is not always easy to verify. Therefore, people come up with various sufficient conditions for the learnability of a language class. See also Induction of regular languages for learnable subclasses of regular languages.

Finite thickness

[edit]

A class of languages has finite thickness if every non-empty set of strings is contained in at most finitely many languages of the class. This is exactly Condition 3 in Angluin's paper.[13] Angluin showed that if a class of recursive languages has finite thickness, then it is learnable in the limit.[14]

A class with finite thickness certainly satisfies MEF-condition and MFF-condition; in other words, finite thickness implies M-finite thickness.[15]

Finite elasticity

[edit]

A class of languages is said to have finite elasticity if for every infinite sequence of strings and every infinite sequence of languages in the class , there exists a finite number n such that implies is inconsistent with .[16]

It is shown that a class of recursively enumerable languages is learnable in the limit if it has finite elasticity.

Mind change bound

[edit]

A bound over the number of hypothesis changes that occur before convergence.

Other concepts

[edit]

Infinite cross property

[edit]

A language L has infinite cross property within a class of languages if there is an infinite sequence of distinct languages in and a sequence of finite subset such that:

  • ,
  • ,
  • , and
  • .

Note that L is not necessarily a member of the class of language.

It is not hard to see that if there is a language with infinite cross property within a class of languages, then that class of languages has infinite elasticity.

Relations between concepts

[edit]
  • Finite thickness implies finite elasticity;[15][17] the converse is not true.
  • Finite elasticity and conservatively learnable implies the existence of a mind change bound. [1]
  • Finite elasticity and M-finite thickness implies the existence of a mind change bound. However, M-finite thickness alone does not imply the existence of a mind change bound; neither does the existence of a mind change bound imply M-finite thickness. [2]
  • Existence of a mind change bound implies learnability; the converse is not true.
  • If we allow for noncomputable learners, then finite elasticity implies the existence of a mind change bound; the converse is not true.
  • If there is no accumulation order for a class of languages, then there is a language (not necessarily in the class) that has infinite cross property within the class, which in turn implies infinite elasticity of the class.

Open questions

[edit]
  • If a countable class of recursive languages has a mind change bound for noncomputable learners, does the class also have a mind change bound for computable learners, or is the class unlearnable by a computable learner?

Notes

[edit]
  1. ^ "A+B" contains all strings that are in A or in B; "AB" contains all concatenations of a string in A with a string in B; "A*" contains all repetitions (zero or more times) of strings in A; "ε" denotes the empty string; "a" and "b" denote themselves. For example, the expression "(ab+ba)*" in step 7 denotes the infinite set { ε, ab, ba, abab, abba, baab, baba, ababab, ababba, ... }.
  2. ^ i.e. text presentation, where the string given by the teacher is a primitive recursive function of the current step number, and the learner encodes a language guess as a program that enumerates the language
  3. ^ i.e. the class of languages that are decidable by primitive recursive functions
  4. ^ i.e. containing all finite languages and at least one infinite one
  5. ^ i.e. text presentation, except for the anomalous text presentation setting
  6. ^ i.e. the class of languages consisting of a single string (they are mentioned here only as a common lower bound to finite languages and pattern languages)
  7. ^ incomparable to regular and to context-free language class: Theorem 3.10, p.53

References

[edit]
  1. ^ Gold, E. Mark (1964). Language identification in the limit (RAND Research Memorandum RM-4136-PR). RAND Corporation.
  2. ^ Gold, E. Mark (May 1967). "Language identification in the limit" (PDF). Information and Control. 10 (5): 447–474. doi:10.1016/S0019-9958(67)91165-5.
  3. ^ p.457
  4. ^ Theorem I.8,I.9, p.470-471
  5. ^ Theorem I.6, p.469
  6. ^ Theorem I.3, p.467
  7. ^ Johnson, Kent (October 2004). "Gold's Theorem and Cognitive Science". Philosophy of Science. 71 (4): 571–592. doi:10.1086/423752. ISSN 0031-8248. S2CID 5589573.
  8. ^ Dana Angluin (1980). "Inductive Inference of Formal Languages from Positive Data" (PDF). Information and Control. 45 (2): 117–135. doi:10.1016/S0019-9958(80)90285-5.
  9. ^ a b p.121 top
  10. ^ p.123 top
  11. ^ Table 1, p.452, in (Gold 1967)
  12. ^ Dana Angluin (1980). "Finding Patterns Common to a Set of Strings". Journal of Computer and System Sciences. 21: 46–62. doi:10.1016/0022-0000(80)90041-0.
  13. ^ p.123 mid
  14. ^ p.123 bot, Corollary 2
  15. ^ a b Andris Ambainis; Sanjay Jain; Arun Sharma (1997). "Ordinal mind change complexity of language identification" (PDF). Computational Learning Theory. LNCS. Vol. 1208. Springer. pp. 301–315.; here: Proof of Corollary 29
  16. ^ a b Motoki, Shinohara, and Wright (1991) "The correct definition of finite elasiticity: corrigendum to identification of unions", Proc. 4th Workshop on Computational Learning Theory, 375-375
  17. ^ Wright, Keith (1989) "Identification of Unions of Languages Drawn from an Identifiable Class". Proc. 2nd Workwhop on Computational Learning Theory, 328-333; with correction in:[16]
舌头有点麻是什么病的前兆 腰间盘突出用什么药好 岁月如梭是什么意思 什么人适合吃人参 火字旁跟什么有关
砭石是什么东西 hpc是什么意思 包皮瘙痒用什么药 打篮球对身体有什么好处 午餐肉是什么肉
拔草是什么意思 6岁儿童为什么会长腿毛 为什么月经期有性冲动 被螨虫咬了用什么药膏 妈妈是什么
大便不正常是什么原因造成的 中药地龙是什么 额头上有痣代表什么 风寒感冒吃什么药好 三生石是什么意思
神经病吃什么药效果好hcv8jop7ns3r.cn 白带发绿是什么原因hcv9jop1ns9r.cn 稀松平常是什么意思520myf.com 什么车可以闯红灯hcv8jop0ns4r.cn 缪斯什么意思hcv8jop6ns1r.cn
牙根吸收是什么意思hcv7jop5ns1r.cn 琪是什么意思hcv9jop7ns2r.cn 尾椎骨痛挂什么科sscsqa.com 做彩超为什么要憋尿hcv9jop7ns3r.cn 流是什么意思hcv9jop6ns8r.cn
阴虚吃什么食物补得快hanqikai.com 97年的属什么hcv7jop6ns8r.cn 硕是什么意思hcv8jop7ns2r.cn hc是胎儿的什么creativexi.com 高处不胜寒的胜是什么意思hcv9jop1ns6r.cn
空亡是什么意思hcv9jop1ns1r.cn 卖萌是什么意思dajiketang.com 龙飞凤舞是什么意思hcv7jop6ns0r.cn 尿道口感染吃什么药hcv7jop7ns2r.cn 补脑吃什么hcv8jop2ns8r.cn
百度