晚上剪指甲有什么禁忌| chd是什么意思| 早筛是检查什么项目| 怀孕前3个月需要注意什么| 什么是牛黄| 傻子是什么意思| 血糖高喝什么茶好| 六度万行 是什么意思| 体能是什么| 为什么会耳鸣| 子宫后倾位是什么意思| 唇炎去医院挂什么科| 恋童癖是什么意思| ics是什么药| 一什么鼓| 手凉是什么原因| 长寿花用什么肥料最好| 什么是soho| 定增是什么意思| 心不在焉是什么意思| 前列腺炎吃什么中成药| 有尿意但是尿不出来是什么原因| 每天一杯蜂蜜水有什么好处| 豆柏是什么| 女生为什么会痛经| 裸官是什么意思| 八哥是什么鸟| 金牛座的幸运色是什么| 灰棕色是什么颜色| zoom是什么意思| 养神经的药是什么药最好| 阳虚吃什么中成药| 双肾尿酸盐结晶是什么意思| 为什么想吃甜食| 诸君是什么意思| 孕晚期宫缩是什么感觉| 维生素b族有什么用| 梦见自己洗头发是什么意思| 肠炎吃什么药最好| 大片是什么意思| 小米可以和什么一起煮粥| aigner是什么牌子| 两个务必是什么| 女人梦见蛇缠身是什么预兆| 什么是平衡力| 42是什么生肖| 泡打粉是什么东西| 血液病是什么| 例假血是黑色的是什么原因| 尿路感染吃什么药效果最好| 三维是什么意思| 毫无违和感是什么意思| 东盟是什么意思| 鱼子酱是什么鱼的鱼子| 血压太低会有什么危险| 吃槐花有什么好处| 1月27日是什么星座| 外阴炎吃什么药| 花笺是什么意思| 胰腺炎吃什么药见效快| 簸箕是什么东西| 什么水果是温性的| 什么化妆品好| 6代表什么意思| 水泡型脚气用什么药好| 羊肉炖什么好吃又营养| 眼睛干涩用什么药| 丘疹性荨麻疹吃什么药| 年下恋是什么意思| emerson是什么牌子| 女人吃什么对卵巢和子宫好| 纪委书记是什么级别| 什么的春天| 保妇康栓治疗什么妇科病| 流脑是什么病| kcl是什么药| 让我爱你然后把我抛弃是什么歌| 什么是假性狐臭| 抽搐是什么意思| 吃头发的虫子叫什么| 电饭锅内胆是什么材质| 孕酮低是什么原因造成的| 男人都是大猪蹄子是什么意思| 胸前骨头疼是什么原因| 美蛙是什么蛙| 喘是什么意思| 坐支是什么意思| 榴莲为什么会苦| 无精是什么原因造成的| 补牙属于口腔什么科| 甲功五项查的是什么| 血压偏低有什么危害| 嘴唇开裂是什么原因| 老鼠跟什么属相最配| hl什么意思| 复试是什么意思| 乌龟白眼病用什么药| 慢性阑尾炎吃什么药好| 什么是公历年份| 拔冗是什么意思| 脱髓鞘病变是什么意思| 下午五点多是什么时辰| 滋阴补肾是什么意思| 东南大学什么专业最牛| 中焦不通用什么中成药| 国家副主席是什么级别| 阴离子是什么| r医学是什么意思| 怀孕了吃什么药能流掉| 阴虚火旺是什么意思| 10月7日什么星座| a型血与o型血生的孩子是什么血型| 葡萄球菌用什么抗生素| 喝水有什么好处| 阿鼻地狱是什么意思| 了加一笔是什么字| 无痛人流后吃什么对身体恢复比较好| 纤维是什么意思| 周长是什么意思| 移动电源和充电宝有什么区别| 五行缺什么查询免费| 孕妇适合喝什么牛奶| 大象的鼻子像什么| 夏天吃什么解暑| 黄体酮吃多了有什么副作用| 中国的国粹是什么| 孕妇为什么那么怕热| 支那是什么意思| yet是什么意思| 吃什么长内膜最快最有效| 肠阻塞有什么症状| 脾虚生痰吃什么中成药| 白子是什么| 盆腔少量积液是什么意思| 什么叫托特包| 胃看什么科室| 放化疗后吃什么恢复快| 甘油三酯高吃什么药效果好| 频次是什么意思| 维生素b什么时候吃| 地铁什么时候停运| 清鱼是什么鱼| 口腔溃疡挂什么科| 猫的胡须是干什么用的| 算命先生是什么生肖| 鲤鱼爱吃什么食物| 白茶是什么茶| 心脏支架和搭桥有什么区别| 梦见出血是什么征兆| 嘴角长水泡是什么原因| 白色裤子搭什么颜色上衣| 一什么鱼塘| 胆固醇低是什么原因| 6月7号是什么星座| 小孩走路迟是什么原因| 干净的近义词是什么| 荨麻疹是什么| 血栓吃什么药可以疏通血管| 刺激性干咳是什么症状| 想吐吃什么药| outdoor是什么意思| 嘴角裂口是什么原因怎么办| 参商是什么意思| 内分泌代谢科是看什么病的| 上房是什么意思| 自怨自艾是什么意思| 代谢慢的人吃什么有助于新陈代谢| 宝宝喜欢趴着睡觉是什么原因| 拉不出尿是什么原因| 右胸是什么器官| 汶字五行属什么| 45岁属什么的生肖| 一箭双雕是指什么生肖| 肥达氏反应检查什么病| 什么有所什么| 产生幻觉是什么原因| 白发用什么染发最安全| 何妨是什么意思| 弱点是什么意思| 属鸡适合佩戴什么饰品| 有小肚子是什么原因| 翘楚是什么意思| 谭咏麟属什么生肖| 威士忌兑什么好喝| 角色扮演是什么意思| 淤泥是什么意思| mi是什么| mg是什么元素| 1909年属什么生肖| 福荫是什么意思| 易栓症是什么病| 孩子总爱哭是什么原因| kid是什么意思| 磨玻璃结节影是什么意思| 疱疹用什么药好得快| 头热是什么原因| 老心慌是什么原因| 青青子衿什么意思| 为什么肾阳虚很难恢复| 腮腺炎看什么科室| 疲软是什么意思| 孩子鼻塞吃什么药| 什么有条| 65年属什么生肖| 李白属什么生肖的| 胎盘低要注意什么| 碗摔碎了预示着什么| 五指毛桃什么人不能吃| 秋葵有什么功效| 拉屎有血是什么原因| 夫妻分床睡意味着什么| 拉谷谷女装什么档次的| 3月19是什么星座| 吃芒果有什么好处和坏处| 7.11是什么日子| 泮是什么意思| 三人死亡属于什么事故| 多吃蒜有什么好处和坏处| 右侧中耳乳突炎是什么意思| 什么是僵尸肉| 囊性灶是什么意思| 什么运动可以长高| 桔梗是什么| 细水长流是什么意思| 生殖感染有什么症状| 尿潜血1十是什么原因| 动脉硬化吃什么可以软化血管| 胰腺钙化灶是什么意思| 小孩肠系膜淋巴结炎吃什么药| 为什么姓张的不用说免贵| 经常出汗是什么原因| 属鼠和什么属相相冲| 为什么老是做噩梦| 去草原穿什么衣服拍照好看| 大乌叶是什么茶| value是什么意思| 心动过速吃什么药最好| 1月3号什么星座| 什么人容易长智齿| 玉历宝钞是什么书| 黄金发红是什么原因| 7月份什么星座| 梦见吐血是什么预兆| 病毒性感冒咳嗽吃什么药效果好| 走之旁与什么有关| 睾酮是什么意思| 脾虚喝什么泡水比较好| winner是什么意思| 1999年属兔的是什么命| 小叶紫檀五行属什么| 雅五行属什么| 4月17是什么星座| 吃什么食物补钾| 暮春是什么时候| 牛皮和牛皮革有什么区别| 教科书是什么意思| 梦到猪肉是什么预兆| 颈椎反弓有什么症状| 避孕药有什么副作用| 左肺下叶钙化灶是什么意思| 为什么吃鸽子刀口长得快| 三月二十八号是什么星座| 泌尿科挂什么科| 什么时候减肥效果最快最好| 百度Jump to content

图片--上海频道--人民网

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
The butterfly curve can be defined by parametric equations of x and y.
百度 因此,互联网企业的税收一边倒地集中在几个税率较低的欧盟国家。

In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point, as functions of one or several variables called parameters.[1]

In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not necessarily, time, and the point describes a curve, called a parametric curve. In the case of two parameters, the point describes a surface, called a parametric surface. In all cases, the equations are collectively called a parametric representation,[2] or parametric system,[3] or parameterization (also spelled parametrization, parametrisation) of the object.[1][4][5]

For example, the equations form a parametric representation of the unit circle, where t is the parameter: A point (x, y) is on the unit circle if and only if there is a value of t such that these two equations generate that point. Sometimes the parametric equations for the individual scalar output variables are combined into a single parametric equation in vectors:

Parametric representations are generally nonunique (see the "Examples in two dimensions" section below), so the same quantities may be expressed by a number of different parameterizations.[1]

In addition to curves and surfaces, parametric equations can describe manifolds and algebraic varieties of higher dimension, with the number of parameters being equal to the dimension of the manifold or variety, and the number of equations being equal to the dimension of the space in which the manifold or variety is considered (for curves the dimension is one and one parameter is used, for surfaces dimension two and two parameters, etc.).

Parametric equations are commonly used in kinematics, where the trajectory of an object is represented by equations depending on time as the parameter. Because of this application, a single parameter is often labeled t; however, parameters can represent other physical quantities (such as geometric variables) or can be selected arbitrarily for convenience. Parameterizations are non-unique; more than one set of parametric equations can specify the same curve.[6]

Implicitization

Converting a set of parametric equations to a single implicit equation involves eliminating the variable t from the simultaneous equations This process is called implicitization. If one of these equations can be solved for t, the expression obtained can be substituted into the other equation to obtain an equation involving x and y only: Solving to obtain and using this in gives the explicit equation while more complicated cases will give an implicit equation of the form

If the parametrization is given by rational functions

where p, q, and r are set-wise coprime polynomials, a resultant computation allows one to implicitize. More precisely, the implicit equation is the resultant with respect to t of xr(t) – p(t) and yr(t) – q(t).

In higher dimensions (either more than two coordinates or more than one parameter), the implicitization of rational parametric equations may by done with Gr?bner basis computation; see Gr?bner basis § Implicitization in higher dimension.

To take the example of the circle of radius a, the parametric equations

can be implicitized in terms of x and y by way of the Pythagorean trigonometric identity. With

and we get and thus

which is the standard equation of a circle centered at the origin.

Parametric plane curves

Parabola

The simplest equation for a parabola,

can be (trivially) parameterized by using a free parameter t, and setting

Explicit equations

More generally, any curve given by an explicit equation

can be (trivially) parameterized by using a free parameter t, and setting

Circle

A more sophisticated example is the following. Consider the unit circle which is described by the ordinary (Cartesian) equation

This equation can be parameterized as follows:

With the Cartesian equation it is easier to check whether a point lies on the circle or not. With the parametric version it is easier to obtain points on a plot.

In some contexts, parametric equations involving only rational functions (that is fractions of two polynomials) are preferred, if they exist. In the case of the circle, such a rational parameterization is

With this pair of parametric equations, the point (?1, 0) is not represented by a real value of t, but by the limit of x and y when t tends to infinity.

Ellipse

An ellipse in canonical position (center at origin, major axis along the x-axis) with semi-axes a and b can be represented parametrically as

An ellipse in general position can be expressed as

as the parameter t varies from 0 to 2π. Here (Xc , Yc) is the center of the ellipse, and φ is the angle between the x-axis and the major axis of the ellipse.

Both parameterizations may be made rational by using the tangent half-angle formula and setting

Lissajous curve

A Lissajous curve where kx = 3 and ky = 2.

A Lissajous curve is similar to an ellipse, but the x and y sinusoids are not in phase. In canonical position, a Lissajous curve is given by where kx and ky are constants describing the number of lobes of the figure.

Hyperbola

An east-west opening hyperbola can be represented parametrically by

or, rationally

A north-south opening hyperbola can be represented parametrically as

or, rationally

In all these formulae (h , k) are the center coordinates of the hyperbola, a is the length of the semi-major axis, and b is the length of the semi-minor axis. Note that in the rational forms of these formulae, the points (?a , 0) and (0 , ?a), respectively, are not represented by a real value of t, but are the limit of x and y as t tends to infinity.

Hypotrochoid

A hypotrochoid is a curve traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is at a distance d from the center of the interior circle.

The parametric equations for the hypotrochoids are:

Some examples:

Parametric space curves

Animated Parametric helix

Helix

Parametric helix

Parametric equations are convenient for describing curves in higher-dimensional spaces. For example:

describes a three-dimensional curve, the helix, with a radius of a and rising by 2πb units per turn. The equations are identical in the plane to those for a circle. Such expressions as the one above are commonly written as

where r is a three-dimensional vector.

Parametric surfaces

A torus with major radius R and minor radius r may be defined parametrically as

where the two parameters t and u both vary between 0 and 2π.

As u varies from 0 to 2π the point on the surface moves about a short circle passing through the hole in the torus. As t varies from 0 to 2π the point on the surface moves about a long circle around the hole in the torus.

Straight line

The parametric equation of the line through the point and parallel to the vector is[7]

Applications

Kinematics

In kinematics, objects' paths through space are commonly described as parametric curves, with each spatial coordinate depending explicitly on an independent parameter (usually time). Used in this way, the set of parametric equations for the object's coordinates collectively constitute a vector-valued function for position. Such parametric curves can then be integrated and differentiated termwise. Thus, if a particle's position is described parametrically as

then its velocity can be found as

and its acceleration as

Computer-aided design

Another important use of parametric equations is in the field of computer-aided design (CAD).[8] For example, consider the following three representations, all of which are commonly used to describe planar curves.

Type Form Example Description
Explicit Line
Implicit Circle
Parametric Line
Circle

Each representation has advantages and drawbacks for CAD applications.

The explicit representation may be very complicated, or even may not exist. Moreover, it does not behave well under geometric transformations, and in particular under rotations. On the other hand, as a parametric equation and an implicit equation may easily be deduced from an explicit representation, when a simple explicit representation exists, it has the advantages of both other representations.

Implicit representations may make it difficult to generate points on the curve, and even to decide whether there are real points. On the other hand, they are well suited for deciding whether a given point is on a curve, or whether it is inside or outside of a closed curve.

Such decisions may be difficult with a parametric representation, but parametric representations are best suited for generating points on a curve, and for plotting it.[9]

Integer geometry

Numerous problems in integer geometry can be solved using parametric equations. A classical such solution is Euclid's parametrization of right triangles such that the lengths of their sides a, b and their hypotenuse c are coprime integers. As a and b are not both even (otherwise a, b and c would not be coprime), one may exchange them to have a even, and the parameterization is then

where the parameters m and n are positive coprime integers that are not both odd.

By multiplying a, b and c by an arbitrary positive integer, one gets a parametrization of all right triangles whose three sides have integer lengths.

Underdetermined linear systems

A system of m linear equations in n unknowns is underdetermined if it has more than one solution. This occurs when the matrix of the system and its augmented matrix have the same rank r and r < n. In this case, one can select n ? r unknowns as parameters and represent all solutions as a parametric equation where all unknowns are expressed as linear combinations of the selected ones. That is, if the unknowns are one can reorder them for expressing the solutions as[10]

Such a parametric equation is called a parametric form of the solution of the system.[10]

The standard method for computing a parametric form of the solution is to use Gaussian elimination for computing a reduced row echelon form of the augmented matrix. Then the unknowns that can be used as parameters are the ones that correspond to columns not containing any leading entry (that is the left most non zero entry in a row or the matrix), and the parametric form can be straightforwardly deduced.[10]

See also

Notes

  1. ^ a b c Weisstein, Eric W. "Parametric Equations". MathWorld.
  2. ^ Kreyszig, Erwin (1972). Advanced Engineering Mathematics (3rd ed.). New York: Wiley. pp. 291, 342. ISBN 0-471-50728-8.
  3. ^ Burden, Richard L.; Faires, J. Douglas (1993). Numerical Analysis (5th ed.). Boston: Brookes/Cole. p. 149. ISBN 0-534-93219-3.
  4. ^ Thomas, George B.; Finney, Ross L. (1979). Calculus and Analytic Geometry (fifth ed.). Addison-Wesley. p. 91.
  5. ^ Nykamp, Duane. "Plane parametrization example". mathinsight.org. Retrieved 2025-08-14.
  6. ^ Spitzbart, Abraham (1975). Calculus with Analytic Geometry. Gleview, IL: Scott, Foresman and Company. ISBN 0-673-07907-4. Retrieved August 30, 2015.
  7. ^ Calculus: Single and Multivariable. John Wiley. 2025-08-14. p. 919. ISBN 9780470888612. OCLC 828768012.
  8. ^ Stewart, James (2003). Calculus (5th ed.). Belmont, CA: Thomson Learning, Inc. pp. 687–689. ISBN 0-534-39339-X.
  9. ^ Shah, Jami J.; Martti Mantyla (1995). Parametric and feature-based CAD/CAM: concepts, techniques, and applications. New York, NY: John Wiley & Sons, Inc. pp. 29–31. ISBN 0-471-00214-3.
  10. ^ a b c Anton, Howard; Rorres, Chris (2014) [1973]. "1.2 Gaussian Elimination". Elementary Linear Algebra (11th ed.). Wiley. pp. 11–24.
肝损伤是怎么回事什么是肝损伤 榴莲什么人不适合吃 吃什么补血贫血 麦粒肿不能吃什么食物 left什么意思
宫颈粘膜慢性炎是什么意思 逍遥丸什么时候吃最好 懵的意思是什么 同房后出血什么原因 肝内低密度影是什么意思
95年猪是什么命 一什么田野 6.19是什么日子 白薯是什么 4.23是什么星座
哈密瓜为什么叫哈密瓜 insun是什么牌子 失眠为什么开奥氮平片 痛风病人不能吃什么 脱线是什么意思
炖鸡汤放什么材料好吃hcv9jop6ns8r.cn 梦到蛇是什么征兆hcv9jop0ns5r.cn 去黄疸吃什么药hcv7jop5ns1r.cn 七夕节的含义是什么bfb118.com 平身是什么意思wuhaiwuya.com
browser什么意思hlguo.com 喜爱的反义词是什么hcv7jop5ns5r.cn 怕冷的女人是什么原因hcv9jop7ns0r.cn 士大夫是什么意思hcv8jop1ns2r.cn 乌龟吃什么水果hcv7jop5ns1r.cn
失眠是什么意思hcv8jop5ns3r.cn 支气管炎吃什么好chuanglingweilai.com 鱼眼睛吃了有什么好处hcv9jop8ns3r.cn 怀疑哮喘要做什么检查hcv7jop9ns8r.cn 属鼠的和什么属相相克hcv9jop8ns1r.cn
低血糖有什么症状表现hcv9jop2ns1r.cn 小葫芦项链是什么牌子hcv9jop0ns0r.cn 嘴唇干是什么原因引起的hcv7jop9ns1r.cn 心悸吃什么中成药hcv8jop9ns6r.cn 风肖是什么生肖hcv8jop9ns4r.cn
百度