蓝色妖姬的花语是什么| 火耗归公是什么意思| 吸血鬼怕什么| 女生月经不规律的原因是什么| 曲高和寡什么意思| 查血型挂什么科| 什么是环切手术| 什么鱼不会游泳| 胖次是什么意思| 绿豆煮出来为什么是红色的| 头自动摇摆是什么原因| 芦笋是什么植物| 后脑勺出汗多是什么原因| 梦到自己被蛇咬是什么意思| 男生染头发什么颜色好看| 吃中药不能吃什么水果| 媛交是什么意思| 鸡眼用什么药好| 欣赏是什么意思| 三唑磷主要打什么虫| 牙齿根管治疗是什么意思| 鳞状上皮细胞是什么| 脑缺血有什么症状| 癸亥五行属什么| 足癣用什么药最快好| 血小板压积偏低是什么意思| 唵嘛呢叭咪吽什么意思| 蚊子喜欢什么| bcc是什么意思| 十五的月亮十六圆是什么意思| 什么不见| 明年是什么年啊| 锁骨是什么骨| 古代女子成年行什么礼| 新五行属什么| 猪头三是什么意思| 湿寒吃什么中成药| 小腿抽筋是什么原因| 眼压高是什么原因| 脸发红发烫是什么原因| 雄鹰是什么意思| 真露酒属于什么酒| 酉时五行属什么| 牡丹花是什么颜色| 什么颜色防晒| 2026年属什么| 小腿痛什么原因| 烟酸是什么| ct检查什么| 籍贯填什么| 鼻涕倒流到咽喉老吐痰吃什么药能根治| 堂号是什么意思| 眼睛视力模糊用什么眼药水| 肾阳虚吃什么药最好最有效| 扁桃体是什么| 处暑的处是什么意思| 春回大地是指什么生肖| 什么炖排骨好吃| 豆加支念什么| onemore是什么牌子| 咖啡喝了有什么好处| 大姨妈期间同房有什么影响| 应激是什么意思| 儿童发育迟缓挂什么科| 睡觉为什么流口水| 什么牌空调好用又省电| 参谋长是什么级别| 王八吃什么食物| hiv弱阳性是什么意思| 猿人头是什么牌子| 高密度脂蛋白胆固醇偏低是什么意思| 吃什么水果容易排便| 女性头部出汗吃什么药| 扁平疣用什么治疗| 31岁属什么生肖| 说话不清楚去医院挂什么科| 屁臭是什么原因| 菠菜含什么元素最高| 低频是什么意思| 乳腺增生是什么原因引起的| 送孕妇什么礼物最贴心| 尿蛋白高是什么意思| 兆以上的计数单位是什么| 现在最好的避孕方法是什么| 喧宾夺主什么意思| 粉红色泡沫样痰是什么病| 卵巢囊性暗区是什么意思| 过敏性鼻炎吃什么药好| 什么人不能献血| 低钾吃什么药| 为宜是什么意思| 五谷丰登是什么生肖| 什么地站着| 暴饮暴食会得什么病| 幽门螺杆菌是什么引起的| 阑尾炎应该挂什么科| 吃什么水果对皮肤好又美白| 壁虎怕什么| sma是什么| 太燃了是什么意思| 子宫内膜厚是什么原因造成的| 机滤是什么| 蚊子最怕什么东西| 牙签肉是什么肉| 慰藉是什么意思| 手心脚心发热吃什么药| 重力是什么| 扪及是什么意思| 韩国的思密达是什么意思| 尿检粘液丝高什么意思| 为什么同房后小腹疼痛| 猫奴是什么意思| 异性缘是什么意思| 打胎吃什么药| 1901年属什么生肖| 时迁是什么意思| 为什么狗不能吃巧克力| 脸上有痣去医院挂什么科| 巨蟹男和什么星座最配| 灰枣和红枣有什么区别| 华堂是什么意思| 什么终于什么造句| 胆固醇高吃什么可以降下来| 肾结晶是什么意思| 头发细软是什么原因| 毛很长的狗是什么品种| 超声波是什么原理| au585是什么金| 子年是什么年| 总是嗳气是什么原因| 女生肾疼是什么原因| 我需要什么| 胳膊肘发黑是什么原因| 湖北古代叫什么| 胎儿宫内窘迫是什么意思| 尿液粉红色是什么原因| 老年人骨质疏松吃什么钙片好| 金玉满堂是什么菜| 肯尼亚说什么语言| 床榻是什么意思| 九月份是什么星座| 支行行长什么级别| 狒狒是什么意思| 哀怨是什么意思| 梦见自己掉牙是什么意思| 19年是什么年| 治安大队是干什么的| 梦到明星是什么意思| 宝宝胎动频繁说明什么| 为什么会连续两天遗精| zorro是什么牌子的打火机| 为什么男的叫鸭子| 肋骨外翻挂什么科| 口苦口干口臭吃什么药| 10万个为什么| 办准生证需要什么资料| 什么情况下吃奥司他韦| 党参有什么作用| 拉尿分叉是什么原因| 胰腺炎是什么病严重吗| 包皮开裂用什么药| 老年人吃什么钙片补钙好| 瓜子脸剪什么发型好看| 为什么前壁容易生男孩| 吃什么会死| 自闭症是什么| 河南属于什么气候| 骨结核吃什么药效果好| 为什么牙齿会发黑| 破瓜年华是什么意思| 溶栓是什么意思| 巨蟹座与什么星座最配| 什么是有限公司| 什么动物最厉害| 盐酸安罗替尼胶囊主要治疗什么| 一什么石子| 手足口挂什么科| 晚上睡不着觉吃什么药| boy是什么牌子| 心律失常吃什么药| 感冒喉咙痛吃什么药| 晚上9点多是什么时辰| 梦见卖鱼是什么意思| 什么食物含硒多| 品行是什么意思| 风生水起是什么意思| 感冒吃什么药最快| 椭圆脸适合什么发型男| 小暑是什么时候| igg是什么意思| 嘴甜是什么原因| 什么水果吃了对皮肤好| 口苦吃什么药最有效| dha是什么| hpv什么意思| 裸睡有什么好处| 吟诗作赋是什么意思| 吃杏子有什么好处| paris是什么牌子| 化妆水是干什么用的| 布洛芬属于什么类药物| 染色体由什么和什么组成| 儿茶是什么中药| 眉毛长白毛是什么征兆| 处女座男和什么座最配对| 自强不息的息是什么意思| 安乃近片是什么药| 为什么挠脚心会痒| 上火吃什么消炎药| ppi是什么药| 俄罗斯的国花是什么花| 肝炎是什么病| 低烧挂什么科| 脑内腔隙灶是什么意思| 月经少吃什么好排血多| mrd是什么意思| 两个百字念什么| 手指疣初期什么样子| 双肾囊性灶是什么意思| 水鱼是什么| 痔核是什么| ood是什么意思| 何解是什么意思| 身上老是痒是什么原因| 汗斑用什么药| 尾盘拉升意味着什么| 脚踏一星是什么命| 灰指甲有什么特效药可以治好| 日柱将星是什么意思| 什么东东| 15岁可以做什么兼职| 穹窿是什么意思| 1996是什么年| 什么叫情绪| 兑卦五行属什么| 油价什么时候下调| 肉馅可以做什么美食| 为什么拉尿会刺痛| 什么时间吃水果最好| 黄瓜与什么食物相克| 政治面貌填什么| 上梁不正下梁歪是什么意思| 什么能软化血管| 嘴角上方有痣代表什么| 萎靡是什么意思| 痔疮什么感觉| 肾素高说明什么| 哥哥的孩子叫我什么| 18是什么生肖| 甲亢甲减有什么症状| 候和侯有什么区别| 流口水是什么原因| 申时是什么时间| 8月23号是什么星座| 腿血栓什么症状| 破是什么生肖| 嘴贱什么意思| 继发性肺结核是什么意思| 吃什么可以提高免疫力| 梦见牛肉有什么征兆| 唐玄宗叫什么| 尿不尽是什么症状| 一如既往什么意思| 脖子淋巴结肿大是什么原因| 百度Jump to content

国家卫生和计划生育委员会重点实验室评估系统

From Wikipedia, the free encyclopedia
(Redirected from Μ-recursive function)
百度 洛绒牛场洛绒牛场海拔4150米,是生活在亚丁附近村民放牧的高山牧场,在这里可以看到成群的牛羊享受着充足的阳光、青青的草地和纯净的湖水静静流淌。

In mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function (sometimes shortened to recursive function).[1] In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines[2][4] (this is one of the theorems that supports the Church–Turing thesis). The μ-recursive functions are closely related to primitive recursive functions, and their inductive definition (below) builds upon that of the primitive recursive functions. However, not every total recursive function is a primitive recursive function—the most famous example is the Ackermann function.

Other equivalent classes of functions are the functions of lambda calculus and the functions that can be computed by Markov algorithms.

The subset of all total recursive functions with values in {0,1} is known in computational complexity theory as the complexity class R.

Definition

[edit]

The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number. They are the smallest class of partial functions that includes the initial functions and is closed under composition, primitive recursion, and the minimization operator μ.

The smallest class of functions including the initial functions and closed under composition and primitive recursion (i.e. without minimisation) is the class of primitive recursive functions. While all primitive recursive functions are total, this is not true of partial recursive functions; for example, the minimisation of the successor function is undefined. The primitive recursive functions are a subset of the total recursive functions, which are a subset of the partial recursive functions. For example, the Ackermann function can be proven to be total recursive, and to be non-primitive.

Primitive or "basic" functions:

  1. Constant functions Ck
    n
    : For each natural number n and every k
    Alternative definitions use instead a zero function as a primitive function that always returns zero, and build the constant functions from the zero function, the successor function and the composition operator.
  2. Successor function S:
  3. Projection function (also called the Identity function): For all natural numbers such that :

Operators (the domain of a function defined by an operator is the set of the values of the arguments such that every function application that must be done during the computation provides a well-defined result):

  1. Composition operator (also called the substitution operator): Given an m-ary function and m k-ary functions :
    This means that is defined only if and are all defined.
  2. Primitive recursion operator ρ: Given the k-ary function and k+2 -ary function :
    This means that is defined only if and are defined for all
  3. Minimization operator μ: Given a (k+1)-ary function , the k-ary function is defined by:

Intuitively, minimisation seeks—beginning the search from 0 and proceeding upwards—the smallest argument that causes the function to return zero; if there is no such argument, or if one encounters an argument for which f is not defined, then the search never terminates, and is not defined for the argument

While some textbooks use the μ-operator as defined here,[5][6] others[7][8] demand that the μ-operator is applied to total functions f only. Although this restricts the μ-operator as compared to the definition given here, the class of μ-recursive functions remains the same, which follows from Kleene's Normal Form Theorem (see below).[5][6] The only difference is, that it becomes undecidable whether a specific function definition defines a μ-recursive function, as it is undecidable whether a computable (i.e. μ-recursive) function is total.[7]

The strong equality relation can be used to compare partial μ-recursive functions. This is defined for all partial functions f and g so that

holds if and only if for any choice of arguments either both functions are defined and their values are equal or both functions are undefined.

Examples

[edit]

Examples not involving the minimization operator can be found at Primitive recursive function#Examples.

The following examples are intended just to demonstrate the use of the minimization operator; they could also be defined without it, albeit in a more complicated way, since they are all primitive recursive.

  • The integer square root of x can be defined as the least z such that . Using the minimization operator, a general recursive definition is , where Not, Gt, and Mul are logical negation, greater-than, and multiplication,[9] respectively. In fact, is 0 if, and only if, holds. Hence is the least z such that holds. The negation junctor Not is needed since Gt encodes truth by 1, while μ seeks for 0.

The following examples define general recursive functions that are not primitive recursive; hence they cannot avoid using the minimization operator.

Total recursive function

[edit]

A general recursive function is called total recursive function if it is defined for every input, or, equivalently, if it can be computed by a total Turing machine. There is no way to computably tell if a given general recursive function is total - see Halting problem.

Equivalence with other models of computability

[edit]

In the equivalence of models of computability, a parallel is drawn between Turing machines that do not terminate for certain inputs and an undefined result for that input in the corresponding partial recursive function. The unbounded search operator is not definable by the rules of primitive recursion as those do not provide a mechanism for "infinite loops" (undefined values).

Normal form theorem

[edit]

A normal form theorem due to Kleene says that for each k there are primitive recursive functions and such that for any μ-recursive function with k free variables there is an e such that

.

The number e is called an index or G?del number for the function f.[10]:?52–53? A consequence of this result is that any μ-recursive function can be defined using a single instance of the μ operator applied to a (total) primitive recursive function.

Minsky observes the defined above is in essence the μ-recursive equivalent of the universal Turing machine:

To construct U is to write down the definition of a general-recursive function U(n, x) that correctly interprets the number n and computes the appropriate function of x. to construct U directly would involve essentially the same amount of effort, and essentially the same ideas, as we have invested in constructing the universal Turing machine [11]

Symbolism

[edit]

A number of different symbolisms are used in the literature. An advantage to using the symbolism is a derivation of a function by "nesting" of the operators one inside the other is easier to write in a compact form. In the following the string of parameters x1, ..., xn is abbreviated as x:

  • Constant function: Kleene uses " Cn
    q
    (x) = q " and Boolos-Burgess-Jeffrey (2002) (B-B-J) use the abbreviation " constn( x) = n ":
e.g. C7
13
( r, s, t, u, v, w, x ) = 13
e.g. const13 ( r, s, t, u, v, w, x ) = 13
  • Successor function: Kleene uses x' and S for "Successor". As "successor" is considered to be primitive, most texts use the apostrophe as follows:
S(a) = a +1 =def a', where 1 =def 0', 2 =def 0 ' ', etc.
  • Identity function: Kleene (1952) uses " Un
    i
    " to indicate the identity function over the variables xi; B-B-J use the identity function idn
    i
    over the variables x1 to xn:
Un
i
( x ) = idn
i
( x ) = xi
e.g. U7
3
= id7
3
( r, s, t, u, v, w, x ) = t
  • Composition (Substitution) operator: Kleene uses a bold-face Sm
    n
    (not to be confused with his S for "successor" ! ). The superscript "m" refers to the mth of function "fm", whereas the subscript "n" refers to the nth variable "xn":
If we are given h( x )= g( f1(x), ... , fm(x) )
h(x) = Sn
m
(g, f1, ... , fm )
In a similar manner, but without the sub- and superscripts, B-B-J write:
h(x')= Cn[g, f1 ,..., fm](x)
  • Primitive Recursion: Kleene uses the symbol " Rn(base step, induction step) " where n indicates the number of variables, B-B-J use " Pr(base step, induction step)(x)". Given:
  • base step: h( 0, x )= f( x ), and
  • induction step: h( y+1, x ) = g( y, h(y, x),x )
Example: primitive recursion definition of a + b:
  • base step: f( 0, a ) = a = U1
    1
    (a)
  • induction step: f( b' , a ) = ( f ( b, a ) )' = g( b, f( b, a), a ) = g( b, c, a ) = c' = S(U3
    2
    ( b, c, a ))
R2 { U1
1
(a), S [ (U3
2
( b, c, a ) ] }
Pr{ U1
1
(a), S[ (U3
2
( b, c, a ) ] }

Example: Kleene gives an example of how to perform the recursive derivation of f(b, a) = b + a (notice reversal of variables a and b). He starts with 3 initial functions

  1. S(a) = a'
  2. U1
    1
    (a) = a
  3. U3
    2
    ( b, c, a ) = c
  4. g(b, c, a) = S(U3
    2
    ( b, c, a )) = c'
  5. base step: h( 0, a ) = U1
    1
    (a)
induction step: h( b', a ) = g( b, h( b, a ), a )

He arrives at:

a+b = R2[ U1
1
, S3
1
(S, U3
2
) ]

Examples

[edit]

See also

[edit]

References

[edit]
  1. ^ "Recursive Functions". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2021.
  2. ^ Stanford Encyclopedia of Philosophy, Entry Recursive Functions, Sect.1.7: "[The class of μ-recursive functions] turns out to coincide with the class of the Turing-computable functions introduced by Alan Turing as well as with the class of the λ-definable functions introduced by Alonzo Church."
  3. ^ Kleene, Stephen C. (1936). "λ-definability and recursiveness". Duke Mathematical Journal. 2 (2): 340–352. doi:10.1215/s0012-2025-08-06227-2.
  4. ^ Turing, Alan Mathison (Dec 1937). "Computability and λ-Definability". Journal of Symbolic Logic. 2 (4): 153–163. doi:10.2307/2268280. JSTOR 2268280. S2CID 2317046. Proof outline on p.153: [3]
  5. ^ a b Enderton, H. B., A Mathematical Introduction to Logic, Academic Press, 1972
  6. ^ a b Boolos, G. S., Burgess, J. P., Jeffrey, R. C., Computability and Logic, Cambridge University Press, 2007
  7. ^ a b Jones, N. D., Computability and Complexity: From a Programming Perspective, The MIT Press, Cambridge, Massachusetts, London, England, 1997
  8. ^ Kfoury, A. J., R. N. Moll, and M. A. Arbib, A Programming Approach to Computability, 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York, 1982
  9. ^ defined in Primitive recursive function#Junctors, Primitive recursive function#Equality predicate, and Primitive recursive function#Multiplication
  10. ^ Stephen Cole Kleene (Jan 1943). "Recursive predicates and quantifiers" (PDF). Transactions of the American Mathematical Society. 53 (1): 41–73. doi:10.1090/S0002-9947-1943-0007371-8.
  11. ^ Minsky 1972, pp. 189.
On pages 210-215 Minsky shows how to create the μ-operator using the register machine model, thus demonstrating its equivalence to the general recursive functions.
[edit]
减肥不能吃什么水果 副连长是什么军衔 足银是什么意思 女性私处长痘痘是什么原因 梦见打死狗有什么预兆
银红色是什么颜色 anxiety什么意思 慌张是什么意思 媳妇是什么意思 hpv11阳性是什么意思
神经衰弱吃什么药 一直发烧不退是什么原因 孩子上吐下泻吃什么药 农合是什么 吃什么营养神经
复方木尼孜其颗粒治什么病 1月2日是什么星座 为什么会突然晕倒 怎么知道自己缺什么五行 为什么不建议年轻人做肠镜
乳酸菌素片什么时候吃hcv9jop0ns9r.cn 为什么喝水血糖也会高wzqsfys.com 是谁在敲打我窗是什么歌hcv7jop6ns3r.cn 前列腺是什么病hcv8jop3ns2r.cn 梦见抓甲鱼是什么意思hcv9jop6ns6r.cn
潮吹是什么样的hcv9jop2ns7r.cn 红酒为什么要醒酒hcv7jop5ns3r.cn 水丸是什么意思hcv8jop7ns6r.cn 1月7号什么星座hcv8jop4ns8r.cn 儿童节吃什么hcv9jop5ns2r.cn
生蚝什么时候最肥hcv9jop5ns8r.cn 强心剂是什么意思hcv8jop7ns8r.cn 脾气虚吃什么药hcv9jop4ns2r.cn 苎麻是什么面料hcv7jop4ns5r.cn 取环需要做什么检查hcv9jop3ns4r.cn
鬼迷日眼是什么意思hcv8jop6ns8r.cn cc是什么意思1949doufunao.com 水色是什么颜色adwl56.com 维生素c什么时候吃最好hcv9jop1ns7r.cn 普外科是看什么病的baiqunet.com
百度