藿香正气水不能和什么药一起吃| 月经期吃什么水果| hpv16是什么意思| 越什么越什么的词语| 舌头麻木是什么征兆| hpv检查什么项目| 手脚心发热是什么原因| 孕妇吃什么水果对胎儿好| 吃山竹有什么好处和坏处| 人体缺钾是什么原因引起的| 艾滋病一年有什么症状| 7月6号是什么星座| 植物的茎有什么作用| 圣诞礼物什么时候送| 过生日吃什么菜寓意好| 泰国有什么好玩| 银联是什么| 五百年前是什么朝代| 游离前列腺特异性抗原是什么意思| 偶像包袱是什么意思| 右肾盂分离是什么意思| 锌过量会引发什么症状| 鹿鞭是什么| 睡眠不好总做梦是什么原因| 拿什么证明分居两年| 做梦抓鱼什么意思周公解梦| 肠胃炎吃什么药| 髓母细胞瘤是什么病| 圆脸适合什么眉形| 强制是什么意思| 什么是空调病| 附件炎吃什么药最好| 什么是类风湿| 油是什么意思| 87年属什么的生肖| 肉丝炒什么好吃| loveyourself什么意思| 脱发厉害是什么原因引起的| 束缚是什么意思| 来月经头晕是什么原因| 至是什么意思| 斩衰是什么意思| 小蛇吃什么| 上面一个四下面一个正念什么| 肾功能不全是指什么| 用什么刷牙能使牙齿变白| 喝什么补羊水| 乐五行属什么| 轴距是什么意思| 荔枝对身体有什么好处| 睡觉后腰疼是什么原因引起的| 10.30什么星座| 猫便秘吃什么最快排便| 酸辣土豆丝用什么醋| 9月19号什么星座| 俱往矣是什么意思| 什么多腔| 拉屎为什么是黑色的| 尿里有结晶是什么原因| 吊儿郎当是什么意思| 三个大是什么字| 幽门螺旋杆菌有什么危害| 人肉是什么味道的| 额头窄适合什么发型| 假小子是什么意思| 血脂高什么东西不能吃| 儿童抽动症看什么科| 鸡内金是什么东西| 自言自语是什么原因导致| 拉黄水是什么原因| 吃莲雾有什么好处| 第三产业是什么| 5月6日什么星座| 八月一号什么星座| 什么食物降血糖| 意难平是什么意思| 乳酸菌和益生菌有什么区别| 小动脉瘤是什么意思| pangchi是什么牌子的手表| 什么样的山| 女人腿肿应该检查什么| 磋磨什么意思| 蝴蝶代表什么生肖| 寒门子弟是什么意思| 儿童湿疹用什么药| 平方和是什么| 娇嫩的意思是什么| 什么叫几何图形| 夫复何求什么意思| 腰椎退行性变什么意思| 胃疼肚子疼是什么原因| 为什么会流口水| 白鹭吃什么| 扁桃体化脓是什么原因引起的| 尿路感染不能吃什么东西| 骨关节响是什么原因| 大姨妈有黑色血块是什么原因| 普陀山求什么最灵| 鳖是什么动物| 做梦梦见大蟒蛇什么意思| 同型半胱氨酸高吃什么| 什么东西醒酒| 药物流产吃什么药| 五行缺金有什么影响| 包皮看什么科| 水能变成什么| 1月11日是什么星座| 三月六号是什么星座| 阿拉蕾什么意思| 百香果不能和什么一起吃| 胆结石吃什么最好| cn是什么意思二次元| 脑膜炎吃什么药| 图片px是什么意思| 高铁为什么没有e座| 丧尽天良什么意思| 一碗香是什么菜| 大使是什么行政级别| 夏天水肿的原因是什么| 仪表堂堂是什么生肖| 腿脚浮肿是什么原因引起的| 甲钴胺是治什么病的| 鞘膜积液挂什么科| 阴茎不硬吃什么药| 金的部首是什么| 医生为什么用肥皂洗手| 滑膜疝是一种什么病| 鼻涕臭是什么原因| 警察两杠三星是什么级别| 上腹部饱胀是什么原因| 大拇指发麻是什么原因| 6月11日什么星座| 懊恼是什么意思| 髓母细胞瘤是什么病| 耳朵真菌感染用什么药| 俄罗斯人是什么人种| 喝白糖水有什么好处和坏处| 中东是什么意思| 皮肤起水泡发痒是什么病| 特别是什么意思| 外伤用什么消炎药| 中央政法委书记什么级别| 富强粉是什么面粉| 嗓子疼喝什么药| 火和什么相生| 怀孕一个月会有什么反应| 能屈能伸是什么生肖| 智齿疼吃什么药最管用| 钊字五行属什么| 处女膜什么样子| 人体7大营养素是什么| 引体向上练什么肌肉| 960万平方千米是指我国的什么| 肚子胀气吃什么通气| 排便困难用什么药| 毛泽东什么时候死的| 扁桃体是什么| 益生菌对人体有什么好处| 什么叫修辞手法| 支气管炎能吃什么水果| 起司是什么| 毛字出头念什么| 干支是什么意思| 脾肺两虚吃什么中成药| doms是什么意思| 晚上睡觉流口水是什么病| hov是什么意思| 子息克乏是什么意思| 激情什么意思| 老司机什么意思| biubiubiu是什么意思| 上火便秘吃什么最快排便| 痤疮是什么东西| 人为什么会脱发| sub是什么意思| 根管治疗是什么| 猥琐男是什么意思| 什么是十字花科蔬菜| 铁树开花是什么意思| 勾芡是什么意思| 乳房痒是什么原因| 瓜子脸适合什么眼镜| 身份证号最后一位代表什么| 气虚血虚吃什么中成药| 什么是气胸| 马步鱼是什么鱼| 刚生完孩子可以吃什么水果| 山梨酸是什么| 高姿属于什么档次| 单反是什么意思| 求知欲的欲什么意思| 腾空是什么意思| 地板砖什么颜色好看| 睫毛炎有什么症状| 早餐吃什么有营养| 总咳嗽是什么原因| 促甲状腺素低是什么原因| 恶作剧是什么意思| 肝内低密度灶是什么意思| 虎视眈眈是什么意思| 恐龙什么时候灭绝的| 什么的游泳| 什么人入什么| 过期的酸奶有什么用| 普高和职高有什么区别| 女人右眼跳预示着什么| 民考民是什么意思| 着床成功后有什么症状或感觉| 眼角发黄是什么原因| 外阴苔藓用什么药膏| 黄瓜为什么会发苦| 宝宝咳嗽吃什么药好| 老人脚肿吃什么药消肿| 静脉血栓是什么症状| 望眼欲穿是什么意思| gag是什么意思| 己五行属什么| 牛大力有什么功效| 手腕痛是什么原因| 上网是什么意思| 1975年属兔的是什么命| 经期喝咖啡有什么影响| 抬头纹开了是什么意思| 梦见小麦粒是什么意思| 6月1是什么星座| 低血压吃什么好的最快| 龋牙是什么意思| crf是什么意思| 应无所住什么意思| 绿杨春属于什么茶| 紫色代表什么| 秋天有什么水果成熟| 门特是什么| 0m是什么意思| 11月份是什么季节| 乡镇派出所所长是什么级别| 地黄泡水喝有什么好处| 低血糖挂什么科| 感冒头疼吃什么药| 镜检是什么| 麻油跟香油什么区别| 为什么不建议年轻人做肠镜| 什么鱼好吃| 肝肾功能挂什么科| ojbk 是什么意思| 睡觉流眼泪是什么原因| 什么牌子的洗发水好用| 什么的遐想| 梦见小白蛇是什么预兆| 美国是什么洲| 正常白带什么颜色| 大佬什么意思| 随性是什么意思| 子宫复旧不良有什么症状| 贵妃是什么意思| 没有料酒用什么去腥| 吃什么中药能降血压| 12月21日是什么星座| 劝君更尽一杯酒的下一句是什么| 为什么女生| 鹅喜欢吃什么食物| 稽是什么意思| 学护理需要什么条件| 磅礴是什么意思| 百度Jump to content

Dictionary.NET(辞典翻译工具)V8.7.6307绿色版

From Wikipedia, the free encyclopedia
(Redirected from Complex function)
百度 对于叙利亚来讲,最主要的敌人当然是美国,正是美国对叙利亚内战的干涉,扶植各派反政府力量,一心一意想彻底铲除巴沙尔政权,在叙利亚扶植一个亲美政权,这是叙利亚内战打了7年之久的重要原因。

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.[1]

As a differentiable function of a complex variable is equal to the sum function given by its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable, that is, holomorphic functions. The concept can be extended to functions of several complex variables.

Complex analysis is contrasted with real analysis, which deals with the study of real numbers and functions of a real variable.

History

[edit]
Augustin-Louis Cauchy, one of the founders of complex analysis

Complex analysis is one of the classical branches in mathematics, with roots in the 18th century and just prior. Important mathematicians associated with complex numbers include Euler, Gauss, Riemann, Cauchy, Weierstrass, and many more in the 20th century. Complex analysis, in particular the theory of conformal mappings, has many physical applications and is also used throughout analytic number theory. In modern times, it has become very popular through a new boost from complex dynamics and the pictures of fractals produced by iterating holomorphic functions. Another important application of complex analysis is in string theory which examines conformal invariants in quantum field theory.

Complex functions

[edit]
An exponential function An of a discrete (integer) variable n, similar to geometric progression

A complex function is a function from complex numbers to complex numbers. In other words, it is a function that has a (not necessarily proper) subset of the complex numbers as a domain and the complex numbers as a codomain. Complex functions are generally assumed to have a domain that contains a nonempty open subset of the complex plane.

For any complex function, the values from the domain and their images in the range may be separated into real and imaginary parts:

where are all real-valued.

In other words, a complex function may be decomposed into

and

i.e., into two real-valued functions (, ) of two real variables (, ).

Similarly, any complex-valued function f on an arbitrary set X (is isomorphic to, and therefore, in that sense, it) can be considered as an ordered pair of two real-valued functions: (Re f, Im f) or, alternatively, as a vector-valued function from X into

Some properties of complex-valued functions (such as continuity) are nothing more than the corresponding properties of vector valued functions of two real variables. Other concepts of complex analysis, such as differentiability, are direct generalizations of the similar concepts for real functions, but may have very different properties. In particular, every differentiable complex function is analytic (see next section), and two differentiable functions that are equal in a neighborhood of a point are equal on the intersection of their domain (if the domains are connected). The latter property is the basis of the principle of analytic continuation which allows extending every real analytic function in a unique way for getting a complex analytic function whose domain is the whole complex plane with a finite number of curve arcs removed. Many basic and special complex functions are defined in this way, including the complex exponential function, complex logarithm functions, and trigonometric functions.

Holomorphic functions

[edit]

Complex functions that are differentiable at every point of an open subset of the complex plane are said to be holomorphic on . In the context of complex analysis, the derivative of at is defined to be[2]

Superficially, this definition is formally analogous to that of the derivative of a real function. However, complex derivatives and differentiable functions behave in significantly different ways compared to their real counterparts. In particular, for this limit to exist, the value of the difference quotient must approach the same complex number, regardless of the manner in which we approach in the complex plane. Consequently, complex differentiability has much stronger implications than real differentiability. For instance, holomorphic functions are infinitely differentiable, whereas the existence of the nth derivative need not imply the existence of the (n + 1)th derivative for real functions. Furthermore, all holomorphic functions satisfy the stronger condition of analyticity, meaning that the function is, at every point in its domain, locally given by a convergent power series. In essence, this means that functions holomorphic on can be approximated arbitrarily well by polynomials in some neighborhood of every point in . This stands in sharp contrast to differentiable real functions; there are infinitely differentiable real functions that are nowhere analytic; see Non-analytic smooth function § A smooth function which is nowhere real analytic.

Most elementary functions, including the exponential function, the trigonometric functions, and all polynomial functions, extended appropriately to complex arguments as functions , are holomorphic over the entire complex plane, making them entire functions, while rational functions , where p and q are polynomials, are holomorphic on domains that exclude points where q is zero. Such functions that are holomorphic everywhere except a set of isolated points are known as meromorphic functions. On the other hand, the functions , , and are not holomorphic anywhere on the complex plane, as can be shown by their failure to satisfy the Cauchy–Riemann conditions (see below).

An important property of holomorphic functions is the relationship between the partial derivatives of their real and imaginary components, known as the Cauchy–Riemann conditions. If , defined by , where , is holomorphic on a region , then for all ,

In terms of the real and imaginary parts of the function, u and v, this is equivalent to the pair of equations and , where the subscripts indicate partial differentiation. However, the Cauchy–Riemann conditions do not characterize holomorphic functions, without additional continuity conditions (see Looman–Menchoff theorem).

Holomorphic functions exhibit some remarkable features. For instance, Picard's theorem asserts that the range of an entire function can take only three possible forms: , , or for some . In other words, if two distinct complex numbers and are not in the range of an entire function , then is a constant function. Moreover, a holomorphic function on a connected open set is determined by its restriction to any nonempty open subset.

Conformal map

[edit]
A rectangular grid (top) and its image under a conformal map (bottom). It is seen that maps pairs of lines intersecting at 90° to pairs of curves still intersecting at 90°.

In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.

More formally, let and be open subsets of . A function is called conformal (or angle-preserving) at a point if it preserves angles between directed curves through , as well as preserving orientation. Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature.

The conformal property may be described in terms of the Jacobian derivative matrix of a coordinate transformation. The transformation is conformal whenever the Jacobian at each point is a positive scalar times a rotation matrix (orthogonal with determinant one). Some authors define conformality to include orientation-reversing mappings whose Jacobians can be written as any scalar times any orthogonal matrix.[3]

For mappings in two dimensions, the (orientation-preserving) conformal mappings are precisely the locally invertible complex analytic functions. In three and higher dimensions, Liouville's theorem sharply limits the conformal mappings to a few types.

The notion of conformality generalizes in a natural way to maps between Riemannian or semi-Riemannian manifolds.

Major results

[edit]
Color wheel graph of the function f(x) = ?(x2 ? 1)(x ? 2 ? i)2/x2 + 2 + 2i?.
Hue represents the argument, brightness the magnitude.

One of the central tools in complex analysis is the line integral. The line integral around a closed path of a function that is holomorphic everywhere inside the area bounded by the closed path is always zero, as is stated by the Cauchy integral theorem. The values of such a holomorphic function inside a disk can be computed by a path integral on the disk's boundary (as shown in Cauchy's integral formula). Path integrals in the complex plane are often used to determine complicated real integrals, and here the theory of residues among others is applicable (see methods of contour integration). A "pole" (or isolated singularity) of a function is a point where the function's value becomes unbounded, or "blows up". If a function has such a pole, then one can compute the function's residue there, which can be used to compute path integrals involving the function; this is the content of the powerful residue theorem. The remarkable behavior of holomorphic functions near essential singularities is described by Picard's theorem. Functions that have only poles but no essential singularities are called meromorphic. Laurent series are the complex-valued equivalent to Taylor series, but can be used to study the behavior of functions near singularities through infinite sums of more well understood functions, such as polynomials.

A bounded function that is holomorphic in the entire complex plane must be constant; this is Liouville's theorem. It can be used to provide a natural and short proof for the fundamental theorem of algebra which states that the field of complex numbers is algebraically closed.

If a function is holomorphic throughout a connected domain then its values are fully determined by its values on any smaller subdomain. The function on the larger domain is said to be analytically continued from its values on the smaller domain. This allows the extension of the definition of functions, such as the Riemann zeta function, which are initially defined in terms of infinite sums that converge only on limited domains to almost the entire complex plane. Sometimes, as in the case of the natural logarithm, it is impossible to analytically continue a holomorphic function to a non-simply connected domain in the complex plane but it is possible to extend it to a holomorphic function on a closely related surface known as a Riemann surface.

All this refers to complex analysis in one variable. There is also a very rich theory of complex analysis in more than one complex dimension in which the analytic properties such as power series expansion carry over whereas most of the geometric properties of holomorphic functions in one complex dimension (such as conformality) do not carry over. The Riemann mapping theorem about the conformal relationship of certain domains in the complex plane, which may be the most important result in the one-dimensional theory, fails dramatically in higher dimensions.

A major application of certain complex spaces is in quantum mechanics as wave functions.

See also

[edit]

References

[edit]
  1. ^ "Industrial Applications of Complex Analysis". Newton Gateway to Mathematics. October 30, 2019. Retrieved November 20, 2023.
  2. ^ Rudin, Walter (1987). Real and Complex Analysis (PDF). McGraw-Hill Education. p. 197. ISBN 978-0-07-054234-1.
  3. ^ Blair, David (2025-08-07). Inversion Theory and Conformal Mapping. The Student Mathematical Library. Vol. 9. Providence, Rhode Island: American Mathematical Society. doi:10.1090/stml/009. ISBN 978-0-8218-2636-2. S2CID 118752074.

Sources

[edit]
[edit]
气压是什么 十月初七是什么星座 肠易激综合征中医叫什么 18k黄金是什么意思 7代表什么意思
狗狗咬主人意味着什么 吃什么促进消化 制片人是做什么的 女猴配什么属相最好 本加一笔是什么字
情字五行属什么 人参归脾丸适合什么人吃 小孩上户口需要什么材料 马鞍皮是什么皮 心源性哮喘首选什么药
潜规则是什么 肝血虚吃什么药 马标志的车是什么牌子 大便是红色的是什么原因 属相兔和什么属相最佳
红曲米是什么东西tiangongnft.com 发烧39度吃什么药hcv8jop6ns7r.cn taco什么意思hcv8jop2ns0r.cn 老是睡不着觉是什么原因wzqsfys.com 看病人送什么hcv9jop3ns1r.cn
经常眨眼睛是什么原因hcv8jop6ns7r.cn 梦见一个人说明什么aiwuzhiyu.com 吃什么对肺好hcv7jop9ns5r.cn 膝盖痛用什么药hcv9jop5ns0r.cn 浮生若梦是什么意思hcv9jop6ns9r.cn
冤家路窄是什么生肖hcv9jop1ns5r.cn 缺钾最忌讳吃什么hcv9jop3ns8r.cn 芮字五行属什么hcv9jop3ns0r.cn 政治面貌填什么hcv8jop2ns7r.cn 苦瓜不能和什么一起吃hcv9jop5ns3r.cn
7点是什么时辰hcv8jop1ns9r.cn 外泌体是什么hcv8jop5ns2r.cn 呼吸有异味是什么原因hcv9jop6ns5r.cn 姨妈安全期是什么时候hcv8jop4ns2r.cn 奉子成婚是什么意思hcv9jop0ns2r.cn
百度