兵马未动粮草先行是什么意思| 吃什么能降血脂| 师五行属什么| 来年是什么意思| 耳浴是什么意思| 王晶为什么不娶邱淑贞| 胃烧心是什么症状| 精卫填海是什么故事| 王昆念什么| 春天的雨是什么| 属蛇的本命佛是什么佛| 痔疮是什么引起的| tbs和tct有什么区别| 老是流眼泪是什么原因| 骨质增生吃什么药最好| 头痛挂什么科| 一饿就胃疼是什么原因| 女人纵欲过度会有什么症状| 为什么小孩子有白头发| 8月10日是什么星座| 耳石症是什么意思| 进门见什么好| 肺部占位性的病变指什么| 康复科是主要治疗什么| 得了性疾病有什么症状| 虫草能治什么病| 胎儿肾积水是什么原因引起的| 皮蛋吃多了有什么危害| 为什么肚子会隐隐作痛| 盆腔炎要做什么检查| 紫苏有什么作用与功效| 梦特娇属于什么档次| 娃娃衫配什么裤子图片| ards是什么病| 先天愚型是什么病| br是什么元素| 心有灵犀什么意思| 子宫肌瘤挂什么科| 什么情况下能吃脑络通| 喜鹊吃什么食物| 双子座女和什么星座最配| 鹦鹉叫什么名字好听| 比细菌还小的东西是什么| 烊化是什么意思| 相形见拙什么意思| 塑形是什么意思| 白羊女喜欢什么样的男生| 交公粮是什么意思| 孕检挂什么科| 早上8点到9点是什么时辰| 上海话娘娘是什么意思| 6月1日是什么星座| 珍珠婚是什么意思| 坚贞不渝是什么意思| 急性肠胃炎吃什么水果| 豆豉是什么| 序曲是什么意思| 骨量是什么意思| 半夜睡不着是什么原因| 什么是陈述句| 月字旁与什么有关| 公司监事是干什么的| 郑州有什么玩的| 肆无忌惮是什么意思| 肠子长息肉有什么症状| 鼻塞一直不好什么原因| 枸橼酸西地那非片有什么副作用| 婚检都查什么| 煲什么汤含蛋白质高| 现在什么餐饮最火| 见血封喉什么意思| 心机boy什么意思| 拉血是什么原因| 晚上喝柠檬水有什么好处| mr检查是什么| 益气固表是什么意思| 荣膺是什么意思| 国家为什么要扫黄| 孕囊长什么样| 经常心慌是什么原因| 子宫内膜厚是什么原因引起的| B2B什么意思| 艸是什么意思| 酸是什么| 为什么心会痛| 黄斑前膜是什么病| 李逵属什么生肖| 病毒感染有什么症状| 总胆固醇高吃什么药好| 刚出生的小鱼吃什么| 喉咙痛买什么药| 停诊是什么意思| 脖子落枕挂什么科| 芥末是什么做的| 男人嘴唇薄代表什么| 逆袭什么意思| 有样学样是什么意思| 代理是什么| 腺样体肥大挂什么科| 人体的三道防线是什么| 发烧适合吃什么水果| 医疗美容需要什么资质| 什么是风寒感冒| bps是什么意思| 经常头晕是什么原因引起的| 无花果什么味道| 肺栓塞的主要症状是什么| 明亮的什么| 身份证号码最后一位代表什么| 香蕉是什么季节的| 脾脏结节一般是什么病| 高什么亮什么| 颞下颌关节紊乱吃什么药| 暗卫是什么意思| 交界痣是什么| 编者按是什么意思| 血小板低什么原因| 疑似是什么意思| 生物科学是什么专业| 血糖高早饭吃什么最好| 什么的雪莲| medicine什么意思| 七月上旬是什么时候| cbb电容是什么电容| 旗舰店是什么意思| 749局是什么| 生眼屎是什么原因引起的| 槐树什么时候开花| 黄芪加陈皮有什么功效| 老年人吃什么奶粉好| 婴儿肥是什么意思| 红细胞体积偏高是什么意思| 阳性血是什么意思| 栀子黄是什么| 功德是什么意思| 五行火生什么克什么| 若无其事的若是什么意思| 三月初一是什么星座| 血脂四项包括什么| 大汗淋漓是什么意思| 导是什么意思| 婴儿半夜哭闹是什么原因| 疳积有什么症状| 尿结晶高是什么原因| 多吃香蕉有什么好处和坏处| 生门是什么意思| 霜和乳有什么区别| 梦见老虎是什么预兆| pd990是什么金| 予五行属什么| 胆碱能性荨麻疹吃什么药| 肾不好会有什么症状| 更年期失眠吃什么药| 用什么泡脚可以脸上祛斑| 孩子流黄鼻涕吃什么药效果好| 什么叫做亚健康| 眼睛大小不一样是什么原因| 蔗糖是什么糖| 馕是什么意思| 性质是什么意思| 夏季吃什么菜好| 牙垢是什么| 胃疼去医院挂什么科| 气虚吃什么| 代谢慢是什么原因| 大学毕业送什么花| 养肝护肝吃什么最好| 洋辣子学名叫什么| 全血粘度低切偏高是什么意思| 吃薄荷叶有什么好处和坏处| 蝎子泡酒有什么功效| 什么是可转债| 舌头溃疡吃什么药| 喝什么利尿效果最好| 女生适合喝什么茶| 朝鲜钱币叫什么| 瘦肉精是什么| 血脂高饮食应注意什么| 内鬼是什么意思| 香菇炒什么菜好吃| 挺舌反应是什么| 咳嗽吃什么药好| 女人五行缺水是什么命| 波霸是什么| 嘴巴臭是什么原因| 莲蓬吃了有什么好处| c肽测定是什么意思| 4月4号是什么星座| 什么是密度| 咳嗽喉咙痛吃什么药| 便秘吃什么药见效快| 信球什么意思| 荷塘月色是什么菜| uniqlo是什么牌子| 多多保重是什么生肖| 河水什么的流着| 618是什么日子| 五十岁是什么之年| 乳酸杆菌是什么| 史记是什么体史书| 行李为什么叫行李| 左氧氟沙星氯化钠注射作用是什么| 湿阻病是什么病| 脚有点浮肿是什么原因| 骨密度高是什么意思| 什么的粉墙| 排骨炖什么汤好喝| 獭尾肝是什么病| 无可奈何的笑是什么笑| 炮机是什么| 头晕是什么引起的| 莫名其妙的心情不好是什么原因| 乙肝阴性是什么意思| 喝牛奶放屁多是什么原因| 早上屁多是什么原因造成的| 心慌什么感觉| 胰腺低密度影什么意思| 呃是什么意思| 三个降号是什么调| 海星吃什么食物| 1.17是什么星座| 巨蟹座女生喜欢什么样的男生| 五经指什么| 羊的守护神是什么菩萨| 虚恋是什么意思| 什么清什么秀| 倦怠期是什么意思| 996什么意思| 皮肤黄是什么原因| 门前栽什么树最好| 生长痛是什么| 日本什么值得买| 手指腱鞘炎是什么原因造成的| 鼻炎挂什么科| 血小板低吃什么好补| 什么叫心脏早搏| 下午右眼跳是什么预兆| 公貔貅和母貔貅有什么区别| 血气分析是检查什么的| 法院是什么机关| 天上的云朵像什么| 壮阳吃什么药| 脚后跟疼是什么情况| 减肥吃什么水果| 一点小事就暴躁的人是什么病| 吃什么补充维生素d| 减肥该吃什么| 汴去掉三点水念什么| 阴唇为什么会长痘痘| 梦见自己结婚了是什么征兆| 吸氧机什么牌子好| 举不胜举的举是什么意思| 探病买什么水果| 11月出生是什么星座| 9月19日是什么星座| 58年属什么今年多大| 18年是什么婚| 拉肚子喝什么粥| 是什么病| 后背一推就出痧是什么原因| 过敏性鼻炎吃什么药好的快| 上午9点是什么时辰| 吃什么补内膜最快| 鹦鹉能吃什么| 百度Jump to content

北舞美女被称小周迅 汪伊美身材挺拔舞姿曼妙实力圈粉

From Wikipedia, the free encyclopedia
(Redirected from Group presentation)
百度 这就是要认清进入新时代的崇高使命,把实现伟大梦想与进行伟大斗争、建设伟大工程、推进伟大事业有机统一起来,在顺应历史、现在、未来的大势中继往开来,强化对实现国家富强、民族振兴、人民幸福使命的自觉担当。

In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation

Informally, G has the above presentation if it is the "freest group" generated by S subject only to the relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by the normal subgroup generated by the relations R.

As a simple example, the cyclic group of order n has the presentation

where 1 is the group identity. This may be written equivalently as

thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity. Such terms are called relators, distinguishing them from the relations that do include an equals sign.

Every group has a presentation, and in fact many different presentations; a presentation is often the most compact way of describing the structure of the group.[citation needed]

A closely related but different concept is that of an absolute presentation of a group.

Background

[edit]

A free group on a set S is a group where each element can be uniquely described as a finite length product of the form:

where the si are elements of S, adjacent si are distinct, and ai are non-zero integers (but n may be zero). In less formal terms, the group consists of words in the generators and their inverses, subject only to canceling a generator with an adjacent occurrence of its inverse.

If G is any group, and S is a generating subset of G, then every element of G is also of the above form; but in general, these products will not uniquely describe an element of G.

For example, the dihedral group D8 of order sixteen can be generated by a rotation r of order 8 and a flip f of order 2, and certainly any element of D8 is a product of r's and f's.

However, we have, for example, rfr = f?1, r7 = r?1, etc., so such products are not unique in D8. Each such product equivalence can be expressed as an equality to the identity, such as

rfrf = 1,
r8 = 1, or
f2 = 1.

Informally, we can consider these products on the left hand side as being elements of the free group F = ?r, f ?, and let R = ?rfrf, r8, f2?. That is, we let R be the subgroup generated by the strings rfrf, r8, f2, each of which is also equivalent to 1 when considered as products in D8.

If we then let N be the subgroup of F generated by all conjugates x?1Rx of R, then it follows by definition that every element of N is a finite product x1?1r1x1 ... xm?1rm xm of members of such conjugates. It follows that each element of N, when considered as a product in D8, will also evaluate to 1; and thus that N is a normal subgroup of F. Thus D8 is isomorphic to the quotient group F/N. We then say that D8 has presentation

Here the set of generators is S = {r, f }, and the set of relations is R = {r 8 = 1, f 2 = 1, (rf )2 = 1}. We often see R abbreviated, giving the presentation

An even shorter form drops the equality and identity signs, to list just the set of relators, which is {r 8, f 2, (rf )2}. Doing this gives the presentation

All three presentations are equivalent.

Notation

[edit]

Although the notation S | R used in this article for a presentation is now the most common, earlier writers used different variations on the same format. Such notations include the following:[citation needed]

  • S | R
  • (S | R)
  • {S; R}
  • S; R

Definition

[edit]

Let S be a set and let FS be the free group on S. Let R be a set of words on S, so R naturally gives a subset of . To form a group with presentation , take the quotient of by the smallest normal subgroup that contains each element of R. (This subgroup is called the normal closure N of R in .) The group is then defined as the quotient group

The elements of S are called the generators of and the elements of R are called the relators. A group G is said to have the presentation if G is isomorphic to .[1]

It is a common practice to write relators in the form where x and y are words on S. What this means is that . This has the intuitive meaning that the images of x and y are supposed to be equal in the quotient group. Thus, for example, rn in the list of relators is equivalent with .[1]

For a finite group G, it is possible to build a presentation of G from the group multiplication table, as follows. Take S to be the set elements of G and R to be all words of the form , where is an entry in the multiplication table.

Alternate definition

[edit]

The definition of group presentation may alternatively be recast in terms of equivalence classes of words on the alphabet . In this perspective, we declare two words to be equivalent if it is possible to get from one to the other by a sequence of moves, where each move consists of adding or removing a consecutive pair or for some x in S, or by adding or removing a consecutive copy of a relator. The group elements are the equivalence classes, and the group operation is concatenation.[1]

This point of view is particularly common in the field of combinatorial group theory.

Finitely presented groups

[edit]

A presentation is said to be finitely generated if S is finite and finitely related if R is finite. If both are finite it is said to be a finite presentation. A group is finitely generated (respectively finitely related, finitely presented) if it has a presentation that is finitely generated (respectively finitely related, a finite presentation). A group which has a finite presentation with a single relation is called a one-relator group.

Recursively presented groups

[edit]

If S is indexed by a set I consisting of all the natural numbers N or a finite subset of them, then it is easy to set up a simple one to one coding (or G?del numbering) f : FSN from the free group on S to the natural numbers, such that we can find algorithms that, given f(w), calculate w, and vice versa. We can then call a subset U of FS recursive (respectively recursively enumerable) if f(U) is recursive (respectively recursively enumerable). If S is indexed as above and R recursively enumerable, then the presentation is a recursive presentation and the corresponding group is recursively presented. This usage may seem odd, but it is possible to prove that if a group has a presentation with R recursively enumerable then it has another one with R recursive.

Every finitely presented group is recursively presented, but there are recursively presented groups that cannot be finitely presented. However a theorem of Graham Higman states that a finitely generated group has a recursive presentation if and only if it can be embedded in a finitely presented group.[2] From this we can deduce that there are (up to isomorphism) only countably many finitely generated recursively presented groups. Bernhard Neumann has shown that there are uncountably many non-isomorphic two generator groups. Therefore, there are finitely generated groups that cannot be recursively presented.

History

[edit]

One of the earliest presentations of a group by generators and relations was given by the Irish mathematician William Rowan Hamilton in 1856, in his icosian calculus – a presentation of the icosahedral group.[3] The first systematic study was given by Walther von Dyck, student of Felix Klein, in the early 1880s, laying the foundations for combinatorial group theory.[4]

Examples

[edit]

The following table lists some examples of presentations for commonly studied groups. Note that in each case there are many other presentations that are possible. The presentation listed is not necessarily the most efficient one possible.

Group Presentation Comments
the free group on S A free group is "free" in the sense that it is subject to no relations.
, the surface group of orientable genus The bracket stands for the commutator:
Cn, the cyclic group of order n
Dn, the dihedral group of order 2n Here r represents a rotation and f a reflection
D, the infinite dihedral group
Dicn, the dicyclic group The quaternion group Q8 is a special case when n = 2
Z × Z
Z/mZ × Z/nZ
the free abelian group on S where R is the set of all commutators of elements of S
Sn, the symmetric group on n symbols generators:
relations:
  • ,
  • ,

The last set of relations can be transformed into

using .

Here σi is the permutation that swaps the ith element with the i+1st one. The product σiσi+1 is a 3-cycle on the set {i, i+1, i+2}.
Bn, the braid groups generators:

relations:

  • ,
Note the similarity with the symmetric group; the only difference is the removal of the relation .
V4 ? D2, the Klein 4 group
T ? A4, the tetrahedral group
O ? S4, the octahedral group
I ? A5, the icosahedral group
Q8, the quaternion group For an alternative presentation see Dicn above with n=2.
SL(2, Z) topologically a and b can be visualized as Dehn twists on the torus
GL(2, Z) nontrivial Z/2Zgroup extension of SL(2, Z)
PSL(2, Z), the modular group PSL(2, Z) is the free product of the cyclic groups Z/2Z and Z/3Z
Heisenberg group
BS(m, n), the Baumslag–Solitar groups
Tits group [a, b] is the commutator

An example of a finitely generated group that is not finitely presented is the wreath product of the group of integers with itself.

Some theorems

[edit]

Theorem. Every group has a presentation.

To see this, given a group G, consider the free group FG on G. By the universal property of free groups, there exists a unique group homomorphism φ : FGG whose restriction to G is the identity map. Let K be the kernel of this homomorphism. Then K is normal in FG, therefore is equal to its normal closure, so ?G | K? = FG/K. Since the identity map is surjective, φ is also surjective, so by the First Isomorphism Theorem, ?G | K? ? im(φ) = G. This presentation may be highly inefficient if both G and K are much larger than necessary.

Corollary. Every finite group has a finite presentation.

One may take the elements of the group for generators and the Cayley table for relations.

Novikov–Boone theorem

[edit]

The negative solution to the word problem for groups states that there is a finite presentation ?S | R? for which there is no algorithm which, given two words u, v, decides whether u and v describe the same element in the group. This was shown by Pyotr Novikov in 1955[5] and a different proof was obtained by William Boone in 1958.[6]

Constructions

[edit]

Suppose G has presentation ?S | R? and H has presentation ?T | Q? with S and T being disjoint. Then

  • the free product G ? H has presentation ?S, T | R, Q?;
  • the direct product G × H has presentation ?S, T | R, Q, [S, T]?, where [S, T] means that every element from S commutes with every element from T (cf. commutator); and
  • the semidirect product G ?φ H has presentation ?S, T | R, Q, {t s t?1 φt(s)?1 | s in S, t in T}?.[7]

Deficiency

[edit]

The deficiency of a finite presentation ?S | R? is just |S| ? |R| and the deficiency of a finitely presented group G, denoted def(G), is the maximum of the deficiency over all presentations of G. The deficiency of a finite group is non-positive. The Schur multiplicator of a finite group G can be generated by ?def(G) generators, and G is efficient if this number is required.[8]

Geometric group theory

[edit]

A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph, which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order, and corresponding Hasse diagrams. An important example is in the Coxeter groups.

Further, some properties of this graph (the coarse geometry) are intrinsic, meaning independent of choice of generators.

See also

[edit]

Notes

[edit]
  1. ^ a b c Peifer, David (1997). "An Introduction to Combinatorial Group Theory and the Word Problem". Mathematics Magazine. 70 (1): 3–10. doi:10.1080/0025570X.1997.11996491.
  2. ^ Higman, G. (2025-08-14). "Subgroups of finitely presented groups". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 262 (1311): 455–475. Bibcode:1961RSPSA.262..455H. doi:10.1098/rspa.1961.0132. ISSN 0080-4630. S2CID 120100270.
  3. ^ Sir William Rowan Hamilton (1856). "Memorandum respecting a new System of Roots of Unity" (PDF). Philosophical Magazine. 12: 446. Archived (PDF) from the original on 2025-08-14.
  4. ^ Stillwell, John (2002). Mathematics and its history. Springer. p. 374. ISBN 978-0-387-95336-6.
  5. ^ Novikov, Pyotr S. (1955), "On the algorithmic unsolvability of the word problem in group theory", Proceedings of the Steklov Institute of Mathematics (in Russian), 44: 1–143, Zbl 0068.01301
  6. ^ Boone, William W. (1958), "The word problem" (PDF), Proceedings of the National Academy of Sciences, 44 (10): 1061–1065, Bibcode:1958PNAS...44.1061B, doi:10.1073/pnas.44.10.1061, PMC 528693, PMID 16590307, Zbl 0086.24701, archived (PDF) from the original on 2025-08-14
  7. ^ Johnson, DL (1990). Presentations of groups. Cambridge, U.K.; New York, NY, USA: Cambridge University Press. p. 140. ISBN 9780521585422.
  8. ^ Johnson, D.L.; Robertson, E.L. (1979). "Finite groups of deficiency zero". In Wall, C.T.C. (ed.). Homological Group Theory. London Mathematical Society Lecture Note Series. Vol. 36. Cambridge University Press. pp. 275–289. ISBN 0-521-22729-1. Zbl 0423.20029.

References

[edit]
[edit]
梦见撞车是什么预兆 枸杞泡水有什么功效 酒后吐吃什么可以缓解 8月8是什么星座 下午三点多是什么时辰
夏占生女是什么意思 硫酸镁是什么 竖心旁的字和什么有关 amount是什么意思 小孩口腔溃疡是什么原因引起的
摇头晃脑是什么生肖 水蛭是什么 血清铁蛋白高说明什么 积食吃什么药 池塘边的榕树上是什么歌
小便多吃什么药好 没有什么 水头是什么意思 五代十国是什么意思 日柱金舆是什么意思
膨鱼鳃用什么搭配煲汤hcv8jop0ns3r.cn 子宫内膜粘连有什么症状hcv8jop5ns0r.cn 圆寂是什么意思wuhaiwuya.com 尾巴长长的是什么鸟hcv9jop4ns9r.cn 阴道炎用什么洗chuanglingweilai.com
王加申念什么cl108k.com 结婚送什么礼物最合适hcv9jop4ns5r.cn 什么车适合女生开hcv8jop4ns4r.cn dady是什么意思hcv9jop7ns9r.cn 女孩子命硬有什么表现hcv8jop0ns5r.cn
张牙舞爪的张是什么意思hcv7jop9ns7r.cn 颂字五行属什么hcv8jop9ns9r.cn 无回声结节是什么意思hcv8jop9ns0r.cn 奥斯卡是什么意思hcv9jop7ns1r.cn 手热脚凉是什么原因hcv9jop6ns8r.cn
曜字五行属什么bjcbxg.com 什么叫副乳hcv8jop0ns3r.cn 孕妇吃什么水果比较好hcv7jop6ns8r.cn 女人有卧蚕代表什么hcv8jop7ns0r.cn 右边锁骨疼是什么原因hcv7jop5ns3r.cn
百度