坚果是什么| 住房公积金缴存基数是什么意思| 湛江有什么好玩的| 18岁是什么生肖| 聚餐吃什么| 鸡五行属什么| 2001年是什么命| 肛门溃烂用什么药膏| 肝胆相照是什么意思| 中国四大发明是什么| 扒是什么意思| 双性人什么意思| 吃什么可以补肾| 一行是什么意思| 舌炎是什么原因引起的怎样治疗| 胎儿fl是什么意思| 经常做噩梦是什么原因| hev是什么病毒| 丹青指什么| 补充镁有什么好处| 黄油是什么油| 高手过招下一句是什么| 步长是什么意思| 胃溃疡吃什么水果好| 海水为什么是蓝色的| r是什么数| 手掌中间那条线是什么线| 什么的海风| 胎位roa是什么意思| 大雄宝殿供奉的是什么佛| canon是什么意思| 中午适合吃什么| 肾炎的症状是什么| 成人达己是什么意思| 18k金和24k金有什么区别| 男人说冷静一段时间是什么意思| 1984年属什么生肖| 中气是什么意思| 补充电解质是什么意思| 喜悦之情溢于言表什么意思| 肌无力吃什么药| 什么情况需要割包皮| 企业bg是什么意思| 室性逸搏是什么意思| 牛仔外套搭配什么裤子好看| rag是什么| 一个合一个页读什么| 膝盖怕冷是什么原因| 老花眼视力模糊有什么办法解决吗| 通草和什么炖最催奶了| 骨刺是什么症状| 株连九族是什么意思| 腰花是什么| 结婚10周年是什么婚| 润滑油是干什么用的| 东南方是什么生肖| 雷蒙欣氨麻美敏片是什么药| 千千阙歌是什么意思| 心律不齐吃什么药好| 角化型足癣用什么药| 老是腹泻是什么原因导致的| 射精是什么感觉| bld是什么意思| 沈阳为什么叫盛京| 尿频吃什么药好| 人中长痘痘是什么原因| 韩信属什么生肖| 什么是肺腺癌| 双子女喜欢什么样的男生| 七夕节吃什么| 蝉是什么生肖| 牛筋面是用什么做的| 栗子不能和什么一起吃| 物质是什么| 3岁属什么生肖| 一个月一个办念什么| 土霉素治什么病| 胰腺炎吃什么药| 上梁不正下梁歪是什么意思| 开火是什么意思| 年薪10万算什么水平| 白蛋白低有什么症状| 刘邦是汉什么帝| 百废待兴是什么意思| 吃了拉肚子的药叫什么| 女人梦见血是什么预兆| 小心眼什么意思| hev是什么病毒| 肝实质回声欠均匀是什么意思| 医院打耳洞挂什么科| 莱昂纳多为什么叫小李子| 心衰吃什么药好| 胎心停了会有什么症状| 消化内科是看什么病的| 湿热吃什么药好| 正县级是什么级别| 尿路感染是什么原因| 返利是什么意思| 尿酸高饮食要注意什么| 吃什么提高记忆力| 死是什么感觉| 蓝色牛仔裤配什么颜色短袖| 根充是什么意思| emmm什么意思| 右肾结晶是什么意思| 梦见刺猬是什么意思| 甘油三酯吃什么药| 党员有什么好处| 老天爷叫什么名字| 蜜蜂蛰了用什么药| 头发变黄是什么原因| 植物神经紊乱用什么药| samsonite什么牌子| 今年53岁属什么生肖| 感冒流黄鼻涕吃什么药| 肾穿刺是什么意思| 头疼是什么原因导致的| 补体c1q偏高说明什么| 陈赫开的火锅店叫什么| 膝盖小腿酸软无力是什么原因| 腊肉炒什么| 鹏字五行属什么| 水蛭是什么东西| 肥什么拱门成语| 牙体牙髓科看什么| 例假期间吃什么好| 硬脂酸镁是什么| 0r是什么意思| 跨界是什么意思| 什么动物| 六块钱麻辣烫什么意思| 米线和米粉有什么区别| 电视黑屏是什么原因| 大脚趾发黑是什么原因| 什么时候看到的月亮最大| 甲功三项能查出什么病| 一什么新月| 谋杀是什么意思| tvb是什么意思| 手抖挂什么科| 12月24号是什么星座| 耳鼻喉属于什么科| 王字旁加己念什么| 感冒发烧吃什么好| 乌龟用什么呼吸| 水肿吃什么消肿最快| 养乌龟有什么好处| 托帕石是什么宝石| 窦性心律逆钟向转位是什么意思| wv是什么意思| 梦见大青蛇是什么预兆| 晚上剪指甲有什么禁忌| 外交部发言人什么级别| 女人小便带血是什么原因引起的| n字鞋子是什么牌子| 什么狗最贵| 爱屋及乌是什么意思| 甘油三酯指什么| 心里想的话用什么标点符号| 胸闷憋气是什么原因| 孩子结膜炎用什么眼药水| 淋球菌是什么病| 正名是什么意思| 两肋胀满闷胀是什么病| 有什么蔬菜| 尹是什么意思| 米线是什么材料做的| 4b橡皮和2b橡皮有什么区别| 肌张力高有什么表现| 身体抽搐是什么原因| 圆寂是什么意思| 一个小时尿一次是什么原因| 流口水吃什么药| 蒸鱼用什么鱼| 孩子为什么不愿意上学| 执子之手与子偕老什么意思| 迂回什么意思| sk是什么牌子| 梦见自己得绝症了是什么预兆| 常吐痰是什么原因| 土霉素喂鸡有什么作用| 一个三点水一个有读什么字| 紫癜吃什么药| 龙年是什么年| 回族人为什么不吃猪肉| 禅让制是什么意思| 子年是什么年| 吃什么对皮肤好还能美白的| 山竹什么样的好| 经常口腔溃疡是什么原因| 1和0是什么意思| 谷草转氨酶高吃什么药| 禁忌是什么意思| 肚脐眼上方是什么器官| 药流后吃什么消炎药| 银屑病为什么会自愈| 山豆念什么| 咖喱饭需要什么材料| 忘带洗面奶用什么代替| 血小板压积偏高是什么意思| 陪跑什么意思| 一直发低烧是什么原因| 电视剧上星是什么意思| 大肠在人体什么位置图| 什么的眉毛| 失足妇女是什么意思| 手串13颗代表什么意思| 藿香泡水喝有什么好处| 肚脐中间疼是什么原因| 左下腹疼是什么原因| 失落感是什么意思| 手腕疼痛是什么原因| 帝王蟹什么季节吃最好| 逸五行属性是什么| 溥仪为什么没有生育能力| 菊花脑是什么菜| 胃肠道功能紊乱吃什么药| 眉毛旁边长痘痘是什么原因| 胆毛糙是什么原因| 突然恶心想吐是什么原因| 脾功能亢进是什么意思| h是什么牌子的皮带| 颈部疼痛挂什么科| 树木什么| 特警是干什么的| 此贝是什么字| 二月四号是什么星座| 女人下面 什么味道| 王晶老婆叫什么名字| 磁共振是检查什么| 眼睛痒用什么眼药水好| 什么什么的太阳| 眼睛发炎用什么眼药水| 亚麻籽吃了有什么好处| 梦见自己出轨是什么意思| 外子是什么意思| 身上为什么老是痒| eagle是什么牌子| 二战时期是什么时候| 喝山楂泡水有什么功效| 办身份证需要什么| 什么是熬夜| 男字五行属什么| 单纯是什么意思| 喝红茶有什么好处和坏处| 一个火一个同念什么| 4月10号是什么星座| hpv16是什么意思| 窒息什么意思| 毫无违和感什么意思| 红血丝用什么护肤品修复比较好| 形态各异的异是什么意思| 小腿疼痛挂什么科| 右侧卵巢内囊性结构什么意思| 反差是什么意思| 秦始皇原名叫什么| 股骨头坏死什么症状| 头部MRI检查是什么意思| 张信哲属什么生肖| 中国国花是什么| 氩弧焊对身体有什么危害| 涤是什么面料| 韭菜补什么| 检查鼻炎要做什么检查| 百度Jump to content

上海历史风貌建筑变身交响音乐博物馆免费开放新闻中心中国常州网 常州第一门户网 常州龙网 常州日报 常州晚报

From Wikipedia, the free encyclopedia
(Redirected from Maximal element)
Hasse diagram of the set P of divisors of 60, partially ordered by the relation "x divides y". The red subset = {1,2,3,4} has two maximal elements, viz. 3 and 4, and one minimal element, viz. 1, which is also its least element.
百度 如今,他活跃在剪纸课堂和社区中,致力于向社会各个年龄阶层的人教授和传承剪纸技艺。

In mathematics, especially in order theory, a maximal element of a subset of some preordered set is an element of that is not smaller than any other element in . A minimal element of a subset of some preordered set is defined dually as an element of that is not greater than any other element in .

The notions of maximal and minimal elements are weaker than those of greatest element and least element which are also known, respectively, as maximum and minimum. The maximum of a subset of a preordered set is an element of which is greater than or equal to any other element of and the minimum of is again defined dually. In the particular case of a partially ordered set, while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements.[1][2] Specializing further to totally ordered sets, the notions of maximal element and maximum coincide, and the notions of minimal element and minimum coincide.

As an example, in the collection ordered by containment, the element {d, o} is minimal as it contains no sets in the collection, the element {g, o, a, d} is maximal as there are no sets in the collection which contain it, the element {d, o, g} is neither, and the element {o, a, f} is both minimal and maximal. By contrast, neither a maximum nor a minimum exists for

Zorn's lemma states that every partially ordered set for which every totally ordered subset has an upper bound contains at least one maximal element. This lemma is equivalent to the well-ordering theorem and the axiom of choice[3] and implies major results in other mathematical areas like the Hahn–Banach theorem, the Kirszbraun theorem, Tychonoff's theorem, the existence of a Hamel basis for every vector space, and the existence of an algebraic closure for every field.

Definition

[edit]

Let be a preordered set and let A maximal element of with respect to is an element such that

if satisfies then necessarily

Similarly, a minimal element of with respect to is an element such that

if satisfies then necessarily

Equivalently, is a minimal element of with respect to if and only if is a maximal element of with respect to where by definition, if and only if (for all ).

If the subset is not specified then it should be assumed that Explicitly, a maximal element (respectively, minimal element) of is a maximal (resp. minimal) element of with respect to

If the preordered set also happens to be a partially ordered set (or more generally, if the restriction is a partially ordered set) then is a maximal element of if and only if contains no element strictly greater than explicitly, this means that there does not exist any element such that and The characterization for minimal elements is obtained by using in place of

Existence and uniqueness

[edit]
A fence consists of minimal and maximal elements only (Example 3).

Maximal elements need not exist.

  • Example 1: Let where denotes the real numbers. For all but (that is, but not ).
  • Example 2: Let where denotes the rational numbers and where is irrational.

In general is only a partial order on If is a maximal element and then it remains possible that neither nor This leaves open the possibility that there exist more than one maximal elements.

  • Example 3: In the fence all the are minimal and all are maximal, as shown in the image.
  • Example 4: Let A be a set with at least two elements and let be the subset of the power set consisting of singleton subsets, partially ordered by This is the discrete poset where no two elements are comparable and thus every element is maximal (and minimal); moreover, for any distinct neither nor

Greatest and least elements

[edit]

For a partially ordered set the irreflexive kernel of is denoted as and is defined by if and For arbitrary members exactly one of the following cases applies:

  1. ;
  2. ;
  3. ;
  4. and are incomparable.

Given a subset and some

  • if case 1 never applies for any then is a maximal element of as defined above;
  • if case 1 and 4 never applies for any then is called a greatest element of

Thus the definition of a greatest element is stronger than that of a maximal element.

Equivalently, a greatest element of a subset can be defined as an element of that is greater than every other element of A subset may have at most one greatest element.[proof 1]

The greatest element of if it exists, is also a maximal element of [proof 2] and the only one.[proof 3] By contraposition, if has several maximal elements, it cannot have a greatest element; see example 3. If satisfies the ascending chain condition, a subset of has a greatest element if, and only if, it has one maximal element.[proof 4]

When the restriction of to is a total order ( in the topmost picture is an example), then the notions of maximal element and greatest element coincide.[proof 5] This is not a necessary condition: whenever has a greatest element, the notions coincide, too, as stated above. If the notions of maximal element and greatest element coincide on every two-element subset of then is a total order on [proof 6]

Dual to greatest is the notion of least element that relates to minimal in the same way as greatest to maximal.

Directed sets

[edit]

In a totally ordered set, the terms maximal element and greatest element coincide, which is why both terms are used interchangeably in fields like analysis where only total orders are considered. This observation applies not only to totally ordered subsets of any partially ordered set, but also to their order theoretic generalization via directed sets. In a directed set, every pair of elements (particularly pairs of incomparable elements) has a common upper bound within the set. If a directed set has a maximal element, it is also its greatest element,[proof 7] and hence its only maximal element. For a directed set without maximal or greatest elements, see examples 1 and 2 above.

Similar conclusions are true for minimal elements.

Further introductory information is found in the article on order theory.

Properties

[edit]
  • Each finite nonempty subset has both maximal and minimal elements. An infinite subset need not have any of them, for example, the integers with the usual order.
  • The set of maximal elements of a subset is always an antichain, that is, no two different maximal elements of are comparable. The same applies to minimal elements.

Examples

[edit]

Consumer theory

[edit]

In economics, one may relax the axiom of antisymmetry, using preorders (generally total preorders) instead of partial orders; the notion analogous to maximal element is very similar, but different terminology is used, as detailed below.

In consumer theory the consumption space is some set , usually the positive orthant of some vector space so that each represents a quantity of consumption specified for each existing commodity in the economy. Preferences of a consumer are usually represented by a total preorder so that and reads: is at most as preferred as . When and it is interpreted that the consumer is indifferent between and but is no reason to conclude that preference relations are never assumed to be antisymmetric. In this context, for any an element is said to be a maximal element if implies where it is interpreted as a consumption bundle that is not dominated by any other bundle in the sense that that is and not

It should be remarked that the formal definition looks very much like that of a greatest element for an ordered set. However, when is only a preorder, an element with the property above behaves very much like a maximal element in an ordering. For instance, a maximal element is not unique for does not preclude the possibility that (while and do not imply but simply indifference ). The notion of greatest element for a preference preorder would be that of most preferred choice. That is, some with implies

An obvious application is to the definition of demand correspondence. Let be the class of functionals on . An element is called a price functional or price system and maps every consumption bundle into its market value . The budget correspondence is a correspondence mapping any price system and any level of income into a subset

The demand correspondence maps any price and any level of income into the set of -maximal elements of .

It is called demand correspondence because the theory predicts that for and given, the rational choice of a consumer will be some element

[edit]

A subset of a partially ordered set is said to be cofinal if for every there exists some such that Every cofinal subset of a partially ordered set with maximal elements must contain all maximal elements.

A subset of a partially ordered set is said to be a lower set of if it is downward closed: if and then Every lower set of a finite ordered set is equal to the smallest lower set containing all maximal elements of

See also

[edit]

Notes

[edit]
Proofs
  1. ^ If and are both greatest, then and and hence by antisymmetry.
  2. ^ If is the greatest element of and then By antisymmetry, this renders ( and ) impossible.
  3. ^ If is a maximal element then (because is greatest) and thus since is maximal.
  4. ^ Only if: see above. — If: Assume for contradiction that has just one maximal element, but no greatest element. Since is not greatest, some must exist that is incomparable to Hence cannot be maximal, that is, must hold for some The latter must be incomparable to too, since contradicts 's maximality while contradicts the incomparability of and Repeating this argument, an infinite ascending chain can be found (such that each is incomparable to and not maximal). This contradicts the ascending chain condition.
  5. ^ Let be a maximal element, for any either or In the second case, the definition of maximal element requires that so it follows that In other words, is a greatest element.
  6. ^ If were incomparable, then would have two maximal, but no greatest element, contradicting the coincidence.
  7. ^ Let be maximal. Let be arbitrary. Then the common upper bound of and satisfies , so by maximality. Since holds by definition of , we have . Hence is the greatest element.

References

[edit]
  1. ^ Richmond, Bettina; Richmond, Thomas (2009), A Discrete Transition to Advanced Mathematics, American Mathematical Society, p. 181, ISBN 978-0-8218-4789-3.
  2. ^ Scott, William Raymond (1987), Group Theory (2nd ed.), Dover, p. 22, ISBN 978-0-486-65377-8
  3. ^ Jech, Thomas (2008) [originally published in 1973]. The Axiom of Choice. Dover Publications. ISBN 978-0-486-46624-8.
disease是什么意思 香蕉补什么 晚上睡觉盗汗是什么原因 为所当为什么意思 北京晚上有什么好玩的景点
荆棘是什么植物 莲雾什么味道 人类什么时候灭绝 面皮是什么做的 女人心肌缺血吃什么药
耳根子软是什么意思 幺蛾子是什么意思 大学毕业送什么花 排骨汤用什么排骨 犹太人是什么人
激凸是什么意思 鸡胗炒什么菜好吃 无下限是什么意思 gap什么意思 三岁看小七岁看老是什么意思
臀纹不对称有什么影响hcv8jop4ns4r.cn 右侧中耳乳突炎是什么意思hcv9jop3ns4r.cn hospital是什么意思0297y7.com 童字五行属什么hebeidezhi.com 人间四月芳菲尽的尽是什么意思hcv8jop6ns5r.cn
三月二十是什么星座weuuu.com 洗衣机单漂洗是什么意思wmyky.com 抽动症是什么原因引起的inbungee.com 什么治咳嗽最快最有效hcv8jop0ns9r.cn star什么意思hcv8jop9ns6r.cn
微波炉可以做什么美食hcv8jop9ns2r.cn 3t是什么意思hcv8jop9ns9r.cn 3475是什么罩杯hcv9jop2ns7r.cn 相向而行什么意思aiwuzhiyu.com 闻名的闻什么意思beikeqingting.com
女人为什么会得甲状腺hcv9jop6ns0r.cn 躯体化是什么意思hcv8jop2ns7r.cn 什么时候吃榴莲最好hcv8jop6ns6r.cn 咽炎吃什么消炎药hcv8jop0ns3r.cn 脚底起水泡是什么原因hcv8jop2ns3r.cn
百度