黄猫来家里有什么预兆| 二郎神叫什么名字| 三点水加个真念什么| 内向的人适合做什么工作| 早上手肿胀是什么原因| 实习期扣分有什么影响| 为什么生理期不能做| 6月8日是什么星座| 硫酸羟氯喹片治什么病| 什么首什么尾| 军犬一般是什么品种| 老二是什么意思| exp是什么意思| 鸡吃什么长得又快又肥| 茶走是什么意思| 子午相冲是什么生肖| 万什么一心| 喝温开水有什么好处| dr是什么检查项目| 艾灸治什么病| 海里是什么单位| 前列腺是什么| 脚掌麻木是什么原因| 冬虫夏草有什么好处| 失眠吃什么药| 一路向北是什么意思| 便秘用什么药效果好| chloe是什么牌子| 白细胞增多是什么原因| 下下签是什么意思| 爱豆是什么意思| 什么叫电子版照片| 血糖高吃什么主食好| 结扎是什么意思| 广州和广东有什么区别| 泸州老窖什么档次| 1976年属什么生肖| 脚底发凉是什么原因| 桐五行属什么| 牙疼有什么办法| 天上的星星像什么| 喝蒲公英有什么好处| 一阵什么| 胎膜早破是什么原因引起的| 指鹿为马指什么生肖| 缺氯有什么症状怎么补| 住房公积金缴存基数是什么意思| 3月21号是什么星座| 安康鱼长什么样| 睡眠时间短是什么原因| 二毛二是什么军衔| 真菌镜检阴性是什么意思| 年轮是什么意思| 07属什么生肖| 齐耳短发适合什么脸型| 七月一号是什么星座| 异淋是什么意思| 失眠有什么特效药| 闭关什么意思| 石女是什么样子的| 玄五行属什么| 北极熊为什么不怕冷| 吃什么东西对胃好| 骨密度t值是什么意思| 休学是什么意思| 1975年是什么年| 怕金森是什么症状| 甲状腺结节吃什么药| 辛是什么味道| 汉字五行属什么| 是的什么意思| 结肠是什么病| 杨贵妃长什么样| 为什么手上会起小水泡| 草包是什么意思| 不排大便是什么原因| 海怪是什么海鲜| 焦虑症吃什么药最好| 玉米须能治什么病| 便秘什么原因引起的| 屁多是什么原因造成的| 动则气喘是什么原因| 嘴巴很臭是什么原因引起的| 禄是什么意思| 经常流鼻血是什么病的前兆| 5月30是什么星座| 红肿痒是什么原因| 五味子不适合什么人喝| 西洋参泡水喝有什么好处| 牛肉用什么调料| 白细胞3个加号是什么意思| 不苟言笑的苟是什么意思| 十一月底是什么星座| 孕妇吃榴莲对胎儿有什么好处| 东北有什么特产| 什么草药可以止痒| 唯利是图是什么生肖| 肺部有问题一般会出现什么症状| 中国女人裹脚是从什么时候开始| 副处级干部是什么级别| 心率高是什么原因| 怀姜是什么姜| 团购什么意思| 澳门什么时候回归祖国| 肝是起什么作用的| 怀孕吃鹅蛋有什么好处| 肠胃炎是什么引起的| 迷瞪是什么意思| 咳嗽无痰吃什么药| 正太什么意思| 喝牛奶放屁多是什么原因| 检查乳房挂什么科| 硅是什么| bape是什么品牌| 脑血管堵塞吃什么药好| 世界上最多的动物是什么| 支气管炎是什么原因引起的| 啊囊死给什么意思| 乙肝五项45阳性是什么意思| 洗牙有什么好处和坏处| 穷书生是什么生肖| 吃什么补血小板效果最好| 开水烫伤用什么药膏好得快| wz是什么意思| 金渐层是什么品种| 血脂高吃什么中药| 孟母三迁告诉我们什么道理| 三个大是什么字| 嘴角起痘是什么原因| 什么是通勤| 今年是什么属相| 不可名状的名是什么意思| 锦鲤可以和什么鱼混养| 惜字如金是什么意思| 居住证签注是什么意思| 跨宽穿什么裤子好看| 儿童过敏性皮炎用什么药膏| 经常落枕是什么原因引起的| 空腹血糖17已经严重到什么时候| 衣服最小码是什么字母| qy是什么意思| 夏天喝什么解渴| 肾阴阳两虚吃什么| 30年属什么生肖| 唾液酸是什么| 下巴底下长痘痘是什么原因| 梦见跳舞是什么意思| 爬山带什么食物比较好| 癌胚抗原是什么意思| 耳朵真菌感染用什么药| 血糖高吃什么最好| 尿蛋白十一是什么意思| 1996年是属什么生肖| 月经期肚子疼是什么原因| 晚上睡觉经常醒是什么原因| 7月20号是什么星座| 四大皆空是指什么| 女人十个簸箕是什么命| 晚上睡眠不好有什么办法可以解决| 海龟汤什么意思| 梦见办酒席是什么意思| 右手中指发麻是什么原因| 化验血能查出什么项目| 子宫癌是什么症状| 拔智齿当天可以吃什么| 堂食是什么意思| 气管炎咳嗽吃什么药最有效| 喉咙干燥吃什么药| 为什么没有win9| hib疫苗是什么意思| 重庆古代叫什么| 望远镜什么牌子好| 黄色裤子配什么上衣| 红枣不能和什么一起吃| 香港有什么东西值得买| 什么叫浪漫| 9月10日是什么节日| 依从性是什么意思| 缺维生素b吃什么食物| rh是什么单位| 什么叫强迫症| 小伙子是什么意思| 除皱针什么牌子效果最好| 女性生活疼痛什么原因| 安全期是指什么时间| 桑叶有什么作用和功效| blissful是什么意思| 说什么| 梦见骨灰盒是什么征兆| 艾滋病早期有什么症状| 三维彩超主要检查什么| 319是什么意思| 气血虚是什么意思| touch什么意思| 为什么会有肾结石| 为什么十个络腮九个帅| 犯法是什么意思| 伸筋草主治什么病| 什么情况会胎停| 户籍地是什么| 2月19日是什么星座| 什么病不能吃丝瓜| 怀孕查雌二醇什么作用| 抢沙发是什么意思| 朱日和是什么意思| 坐月子哭了会有什么后遗症| 吃辣拉肚子是什么原因| 绿豆汤放什么糖最好| 兔死狗烹什么意思| 尿液黄绿色是什么原因| 室间隔缺损是什么意思| 土的行业有什么工作| 如花似玉什么意思| 干什么一天能挣1000元| 梦到抓鱼是什么意思| 1988是什么生肖| 检查是否怀孕挂什么科| 经常出鼻血是什么原因| 李耳为什么叫老子| 家里有壁虎是什么原因| 蓬头垢面是什么意思| 低烧吃什么药好| 孕妇d2聚体高是什么原因| 龙是什么命| kksk是什么意思| 鲤鱼吃什么| 联字五行属什么| 在五行中属什么| 10月4号是什么星座| 小孩子经常流鼻血是什么原因| 16588a是什么尺码女装| 什么是孝| 乳腺结节三级是什么意思| 临界值是什么意思| 印度神油是什么东西| 一什么土| 菊花是什么季节开的| 大便长期不成形是什么原因| wilson是什么意思| fion属于什么档次的包| 肺结节影是什么意思啊| hpv59高危阳性是什么意思| ab型和b型生的孩子是什么血型| 胃肠功能紊乱是什么意思| 身心疲惫是什么意思| 21三体高风险是什么原因造成的| 自相矛盾的道理是什么| 什么西瓜好吃| 珊瑚绒是什么面料| 红薯什么季节成熟| 兴风作浪什么意思| 功高震主是什么意思| 尿渗透压低是什么原因| 六月十五是什么星座| 纸醉金迷下一句是什么| 腋下有异味是什么原因| 白细胞偏低吃什么| 宝宝睡觉摇头是什么原因| 肌肉溶解是什么意思| 平纹布是什么面料| 大什么什么针| 胸闷气短挂什么科| 痔疮吃什么消炎药最好| 为什么孕酮会低| 百度Jump to content

滁州西门子洗衣机维修电话【西门子服务维修专线】

From Wikipedia, the free encyclopedia
(Redirected from McNaughton's Theorem)
百度 太平日子过久了,学子们感受不到一种发愤的动力。

In automata theory, McNaughton's theorem refers to a theorem that asserts that the set of ω-regular languages is identical to the set of languages recognizable by deterministic Muller automata.[1] This theorem is proven by supplying an algorithm to construct a deterministic Muller automaton for any ω-regular language and vice versa.

This theorem has many important consequences. Since (non-deterministic) Büchi automata and ω-regular languages are equally expressive, the theorem implies that Büchi automata and deterministic Muller automata are equally expressive. Since complementation of deterministic Muller automata is trivial, the theorem implies that Büchi automata/ω-regular languages are closed under complementation.

Original statement

[edit]

In McNaughton's original paper, the theorem was stated as:

"An ω-event is regular if and only if it is finite-state."

In modern terminology, ω-events are commonly referred to as ω-languages. Following McNaughton's definition, an ω-event is a finite-state event if there exists a deterministic Muller automaton that recognizes it.

Constructing an ω-regular language from a deterministic Muller automaton

[edit]

One direction of the theorem can be proven by showing that any given Muller automaton recognizes an ω-regular language.

Suppose A = (Q,Σ,δ,q0,F) is a deterministic Muller automaton. The union of finitely many ω-regular languages produces an ω-regular language; therefore it can be assumed without loss of generality that the Muller acceptance condition F contains exactly one set of states {q1, ... ,qn}. Let α be the regular language whose elements will take A from q0 to q1. For 1≤in, let βi be a regular language whose elements take A from qi to q(i mod n)+1 without passing through any state outside of {q1, ... ,qn}. It is claimed that α(β1 ... βn)ω is the ω-regular language recognized by the Muller automaton A. It is proved as follows.

Suppose w is a word accepted by A. Let ρ be the run that led to the acceptance of w. For a time instant t, let ρ(t) be the state visited by ρ at time t. We create an infinite and strictly increasing sequence of time instants t1, t2, ... such that only states in {q1, ... ,qn'} appear after time t1, and for each a and b, ρ(tna+b) = qb. Such a sequence exists because all and only the states of {q1, ... ,qn} appear in ρ infinitely often. By the above definitions of α and β's, it can be easily shown that the existence of such a sequence implies that w is an element of α(β1 ... βn)ω.

Conversely, suppose w ∈ α(β1 ... βn)ω. Due to definition of α, there is an initial segment of w that is an element of α and thus leads A to the state q1. From there on, the run never assumes a state outside of {q1, ... ,qn}, due to the definitions of the β's, and all the states in the set are repeated infinitely often. Therefore, A accepts the word w.

Constructing a deterministic Muller automaton from a given ω-regular language

[edit]

The other direction of the theorem can be proven by showing that there exists a deterministic Muller automaton that recognizes a given ω-regular language.

The union of finitely many deterministic Muller automata can be easily constructed; therefore without loss of generality we assume that the given ω-regular language is of the form αβω. Consider an ω-word w=a1a2... ∈ αβω. Let w(i,j) be the finite segment ai+1,...,aj-1aj of w. For building a Muller automaton for αβω, we introduce the following two concepts with respect to w.

Favor
A time j favors time i if j > i, w(0,i) ∈ αβ*, and w(i,j) ∈ β*.
Equivalence
E(i,j,k), or i is equivalent to j as judged at time k, if i,j ≤ k, w(0,i) ∈ αβ*,w(0,j) ∈ αβ*, and for every word x in Σ*, w(i,k)x ∈ β* if and only if w(j,k)x ∈ β*. It is easy to note that if E(i,j,k) then for all k < l, E(i,j,l). In other words, if i and j are ever judged to be equivalent then they will stay equivalent thereafter. And also for the same l, l favors i if and only if l favors j. Let E(i,j) if there exists a k such that E(i,j,k).

Let p be the number of states in the minimum deterministic finite automaton Aβ* to recognize language β*. Now we prove two lemmas about the above two concepts.

Lemma 1
For any time k, among the times i,j < k such that w(0,i) and w(0,j) ∈ αβ*, the number of equivalence classes induced by E(i,j,k) is bounded by p. Also the number of equivalence classes induced by E(i,j) is bounded by p.
Proof: The finite automaton Aβ* is minimum; therefore it does not contain equivalent states. Let i and j be such that w(0,i) and w(0,j) ∈ αβ* and E(i,j,k). Then, words w(i,k) and w(j,k) will have to take Aβ* to the same state starting from the initial state. Hence, first part of lemma is true. The second part is proved by contradiction. Let's suppose there are p+1 times i1,...,ip+1 such that no two of them are equivalent. For l > max(i1,...,ip+1), we would have, for each m and n, not E(im,in,l). Therefore there would be p+1 equivalence classes, as judged at l, contradicting the first part of the lemma.
Lemma 2
w ∈ αβω if and only if there exists a time i such that there are infinitely many times equivalent to i and favoring i.
Proof: Let's suppose w ∈ αβω then there exists a strictly increasing sequence of times i0,i1,i2,... such that w(0,i0) ∈ α and w(in,in+1) ∈ β. Therefore, for all n > m, w(im,in) ∈ β* and in favors im. So, all the i's are members of one of the finitely many equivalence classes (shown in Lemma 1). So, there must be an infinite subset of all i's that belongs to same class. The smallest member of this subset satisfies the right hand side of this lemma.
Conversely, suppose in w, there are infinitely many times that are equivalent to i and favoring i. From those times, we will construct a strictly increasing and infinite sequence of times i0,i1,i2,... such that w(0,i0) ∈ αβ* and w(in,in+1) ∈ β*. Therefore w would be in αβω. We define this sequence by induction:
Base case: w(0,i) ∈ αβ* because i is in a equivalence class. So, we set i0=i. We set i1 such that i1 favors i0 and E(i0,i1). So, w(i0,i1) ∈ β*.
Induction step: Suppose E(i0,in). So, there exists a time i' such that E(i0,in,i'). We set in+1 such that in+1 > i', in+1 favors i0, and E(i0,in+1). So, w(i0,in+1) ∈ β* and, since in+1 > i' we have by definition of E(i0,in,i'), w(in,in+1) ∈ β*.

Muller automaton construction

[edit]

We have used both the concepts of "favor" and "equivalence" in Lemma 2. Now, we are going to use the lemma to construct a Muller automaton for language αβω. The proposed automaton will accept a word if and only if a time i exists such that it will satisfy the right hand side of Lemma 2. The machine below is described informally. Note that this machine will be a deterministic Muller automaton.

The machine contains p+2 deterministic finite automaton and a master controller, where p is the size of Aβ*. One of the p+2 machine can recognize αβ* and this machine gets input in every cycle. And, it communicates at any time i to the master controller whether or not w(0,i) ∈ αβ*. The rest of p+1 machines are copies of Aβ*. The master can set the Aβ* machines dormant or active. If master sets a Aβ* machine to be dormant then it remains in its initial state and oblivious to the input. If master activates a Aβ* machine then it reads the input and moves, until master makes it dormant and force it back to the initial state. Master can make a Aβ* machine active and dormant as many times as it wants. The master stores the following information about the Aβ* machines at each time instant.

  • Current states of Aβ* machines.
  • List of the active Aβ* machines in the order of their activation time.
  • For each active Aβ* machine M, the set of other active Aβ* machines that were in an accepting state at the time of activation of M. In other words, if a machine is made active at time i and some other machine was last made active at j < i and continue to be active till i then the master keeps the record whether or not i favors j. This record is dropped if the other machine goes dormant before M.

Initially, the master may behave 2 different ways depending on α. If α contains empty word then only one of the Aβ* is active otherwise none of the Aβ* machines are active at the start. Later at some time i, if w(0,i) ∈ αβ* and none of Aβ* machines are in initial state then master activates one of the dormant machines and the just activated Aβ* machine start receiving input from time i+1. At some time, if two Aβ* machines reach to the same state then master makes the machine dormant that was activated later than the other. Note that the master can make the above decisions using the information it stores.

For the output, the master also have a pair of red and green lights corresponding to each Aβ* machine. If a Aβ* machine goes from active state to dormant state then corresponding red light flashes. The green light for some Aβ* machine M, which was activated at j, flashes at time i in the following two situations:

  • M is in initial state, thus E(j,i,i) and i favors j ( the initial state has to be accepting state).
  • For some other active Aβ* machine M' activated at k, where j< k <i, k favors j (the master has record of this) and i is the earliest time at which E(j,k,i) ( M' goes dormant at time i ).

Note that the green light for M does not flash every time when a machine goes dormant due to M.

Lemma 3
If there exist a time equivalent to infinitely many times that favor it and i is the earliest such time, then a Aβ* machine M is activated at i, remained active forever (no corresponding red light flash thereafter), and flashes the green light infinitely many times.
Proof: Let's suppose a Aβ* machine was activated at time j such that j < i and this machine goes to initial state at time i. Therefore, if any time is equivalent and favors i then the time must be in the same relation with j. This contradicts the hypothesis that i is the earliest time such that infinitely many times equivalent to i and favoring i. So at time i, no active machine can be in the initial state. Hence, the master has to activate a new Aβ* machine at time i, which is our M. This machine will never go dormant because if some other machine, which was activated at time l, makes it dormant at time k then E(l,i,k). Again, the same contradiction is implied. By construction and due to infinitely many times are equivalent to i and favor i, the green light will flash infinitely often.
Lemma 4
Conversely, if there is a Aβ* machine M whose green light flashed infinitely often and red light only finitely often then there are infinitely many times equivalent to and favoring the last time at which M became active.
Proof: True by construction.
Lemma 5
w ∈ αβω if and only if, for some Aβ* machine, the green light flashes infinitely often and the red light flashes only finitely often.
Proof: Due to Lemmas 2-4.

The above description of a full machine can be viewed as a large deterministic automaton. Now, it is left to define the Muller acceptance condition. In this large automaton, we define μn to be the set of states in which the green light flashes and the red light does not flash corresponding to nth Aβ* machine. Let νn be the set of states in which the red light does not flash corresponding to nth Aβ* machine. So, Muller acceptance condition F = { S | ?n μn ? S ? νn }. This finishes the construction of the desired Muller automaton. Q.E.D.

Other proofs

[edit]

Since McNaughton's proof, many other proofs have been proposed. The following are some of them.

  • ω-regular languages can be shown equiv-expressive to Büchi automata. Büchi automata can be shown to equiv-expressive to semi-deterministic Büchi automata. Semi-deterministic Büchi automata can be shown to be equiv-expressive to deterministic Muller automata. This proof follows the same lines as the above proof.
  • Safra's construction transforms a non-deterministic Büchi automaton to a deterministic Rabin automaton.[2] This construction is known to be optimal.
  • There is a purely algebraic proof[3] of McNaughton's theorem.

Reference list

[edit]
  1. ^ McNaughton, R.: "Testing and generating infinite sequences by a finite automaton", Information and Control 9, pp. 521–530, 1966.
  2. ^ Safra, S. (1988), "On the complexity of ω-automata", Proceedings of the 29th Annual Symposium on Foundations of Computer Science (FOCS '88), Washington, DC, USA: IEEE Computer Society, pp. 319–327, doi:10.1109/SFCS.1988.21948.
  3. ^ B. Le Sa?c, J.-é. Pin, P. Weil, A purely algebraic proof of McNaughton's theorem on infinite words, Foundations of Software Technology and Theoretical Computer Science, p. 141–151, 1991
9月19日是什么星座 人乳头瘤病毒hpv是什么意思 豆干和什么炒好吃 xxoo什么意思 小生化是检查什么项目
贫血有什么危害 白带黄什么原因 痛风什么药止痛最快 尿酸为什么会高 老舍原名是什么
吃席是什么意思 无什么不什么的成语 降压药什么时间吃最好 79是什么意思 什么人容易得焦虑症
什么原因引起尿酸高 遗物是什么意思 排卵期出血是什么原因 倒卖是什么意思 手麻木是什么引起的
什么是春梦hcv9jop3ns1r.cn 不自主的摇头是什么病hcv8jop3ns8r.cn 耳朵内痒是什么原因hcv9jop1ns2r.cn 吃枸杞有什么功效hcv7jop4ns5r.cn 梦见驴是什么意思liaochangning.com
支架后吃什么药hcv9jop2ns9r.cn 抗链球菌溶血素o偏高是什么原因beikeqingting.com 龙蛇混杂是什么意思hcv9jop4ns4r.cn 祭日和忌日是什么意思hcv9jop1ns3r.cn 2008年是什么年hcv9jop2ns3r.cn
castle什么意思hcv7jop6ns0r.cn 环比是什么hcv8jop8ns6r.cn 什么是跳蛋hcv7jop6ns4r.cn ta是什么hcv8jop2ns2r.cn 一个三点水一个除念什么hcv8jop9ns5r.cn
吃什么养肝护肝效果最好hcv9jop2ns6r.cn 氧分压低是什么原因hcv8jop0ns6r.cn pgr是什么意思hcv8jop9ns1r.cn 大便不成形是什么原因造成的liaochangning.com 拆线去医院挂什么科hcv8jop2ns0r.cn
百度