胃老是恶心想吐是什么原因| 经常流鼻血是什么原因| 大便出血挂什么科| 吃什么东西对胃好| 灰指甲长什么样子图片| 白带变多是什么原因| 九牛一毛是什么生肖| 食神生财是什么意思| 驱除鞑虏是什么意思| 唐伯虎是什么生肖| 为什么晚上血压比白天高| 尿常规检查什么| 钦此是什么意思| 为什么经常放屁| 婴儿放屁多是什么原因| 浩特是什么意思| 脑ct都能查出什么病| 舌头尖疼吃什么药| 青海有什么好玩的| 过敏看什么科室| 灰指甲看什么科| 排山倒海是什么意思| 梦见卖衣服是什么意思| 芦笋是什么植物| 胃痉挛吃什么药| 心什么如什么| 双肾小结石是什么意思| 梦见买苹果是什么征兆| 人老了为什么会瘦| 早上7点是什么时辰| 淋巴组织增生是什么意思| 关羽的马叫什么名字| 梦见拉麦子是什么预兆| 福兮祸兮是什么意思| 掉头发吃什么| 矜贵是什么意思| 鲜卑人是现在的什么人| 包饺子什么馅好吃| oct试验是什么| 社会很单纯复杂的是人是什么歌| 女用避孕套是什么样的| 哮喘是什么症状| 菲律宾货币叫什么| 做爱为什么那么舒服| 上升星座什么意思| 脑供血不足吃什么药最好| 肾结石是什么| 10月27是什么星座| 过敏性咳嗽有什么症状| 计算机二级什么时候考| 七星瓢虫吃什么食物| 虹为什么是虫字旁| 孕妇梦见鬼是什么预兆| 反酸是什么症状| 直肠息肉有什么症状| 夏天不出汗是什么原因| 什么的大叫| 大便不成形是什么原因造成的| 乳糖不耐受可以喝什么奶| 什么是二型糖尿病| 手机卡顿是什么原因| 半夜惊醒是什么原因| 阳痿吃什么药| 大蒜吃多了有什么坏处| 牙痛吃什么药最好| 66岁属什么| 并发是什么意思| 紫薇什么意思| 2月11日什么星座| 绿色代表什么| 脂肪燃烧是什么感觉| 月柱桃花是什么意思| 呕吐吃什么药| 软水是什么水| 一直以来是什么意思| 虾仁不能和什么食物一起吃| 李子什么时候吃最好| 戒断反应是什么| 自勉是什么意思| 5月31日什么星座| 牛仔蓝是什么颜色| 口若什么| 一只什么| 氯雷他定片治什么病| 中焦湿热吃什么中成药| 肚脐上方是什么器官| 做tct检查前要注意什么| 孩子不好好吃饭是什么原因| 糖尿病患者适合吃什么水果| 包皮龟头炎用什么药| 银河系的中心是什么| hbsab是什么意思| 萎缩性鼻炎用什么药| 捡肥皂是什么意思| 碱性磷酸酶偏高说明什么问题| 静脉炎吃什么药好得快| 阿玛尼算什么档次| 丰五行属什么| 纵什么意思| 鸿字五行属什么| 生殖科检查什么| 跖疣是什么| 91视频是什么| 时光荏苒的意思是什么| 养肝护肝喝什么茶最好| 羊经后半边读什么| 阴道是什么| 吃什么东西能养胃| 高血压吃什么降压药| 拖是什么意思| 包干是什么意思| 提踵是什么意思| 视频脑电图能检查出什么| 膝盖怕冷是什么原因| 开瑞坦是什么药| 荨麻疹不能吃什么| 12.21是什么星座| 直肠息肉有什么症状| 什么花是蓝色的| 什么影院| 什么季节减肥效果最快最好| 泌尿外科主要检查什么| 什么车不能坐| 全会是什么意思| 胃胀吃什么| 下巴发黑是什么原因| 乙肝核心抗体阳性说明什么| 为什么怀不上孩子| 痔疮什么情况下需要做手术| 说话口臭是什么原因引起的| 不让看朋友圈显示什么| 左附件囊肿注意什么| 毒龙钻什么意思| 胎膜早破是什么原因引起的| 昆仑玉是什么玉| 喝茶为什么睡不着觉| 舌头裂痕是什么原因| 种植牙是什么意思| 鼻衄是什么意思| 胸口疼应该挂什么科| 溶血症是什么症状| 什么是体外射精| 膝盖跪着疼是什么原因| 覆水难收是什么意思| 鹅蛋孕妇吃有什么好处| 人流后什么叫重体力活| 尿检是检查什么的| 减肥喝什么茶好| 贫血要注意些什么| 胃痛吃什么药效果好| 乙肝两对半245阳性是什么意思| 裙带菜是什么菜| 胆红素高是什么原因引起的| 4月6日什么星座| 小黄鱼是什么鱼| 社会公德的主要内容是什么| 农村合作医疗什么时候交| 心神不定是什么生肖| 星期三打喷嚏代表什么| 什么食物可以化解结石| 甲减有什么症状表现| 舌头发涩是什么原因造成的| 小腿发凉是什么原因造成的| 吃什么可以增强免疫力| c反应蛋白什么意思| vfu是什么牌子| 白球比低是什么原因| Urea医学上是什么意思| 匡威属于什么档次| 项羽为什么会失败| 维生素c有什么用| 小肚子是什么部位| TOYOTA是什么车| 腋窝痒是什么原因| 琴代表什么生肖| 什么叫几何图形| 善对什么| 什么立什么群| 梦见杀狗是什么预兆| 念旧的人是什么样的人| 头疼发烧吃什么药| 胃糜烂有什么症状| 肩膀疼吃什么药| 反法西斯是什么意思| apd是什么意思| 普乐安片治什么病| 心影稍大是什么意思| 胃胀是什么症状| 喝酒上头是什么原因| 36d什么意思| 肚子咕咕叫是什么原因| 压榨是什么意思| 一什么便什么造句| 撒是什么意思| 女人左下眼皮跳是什么预兆| christmas是什么意思| 两败俱伤是什么意思| 高密度脂蛋白是什么| 平肝什么意思| 胸膈痞闷是什么症状| 小孩不吃肉是什么原因| 空调睡眠模式是什么意思| 刘彻是刘邦的什么人| 北京属于什么气候| hitachi是什么品牌| 观音菩萨姓什么| 点痣用什么方法最好| 小白加小白等于什么| 子宫内膜炎用什么药效果好| 医院红色手环代表什么| 痔疮应该挂什么科室| 女人梦见鞋子什么预兆| 狗肉配什么菜好吃| 手麻疼是什么原因引起| 肉芽肿是什么病| 执业医师是什么意思| 兰蔻是什么品牌| alt什么意思| 农历六月十九是什么星座| 湿气重的人不能吃什么| 银杏树叶子像什么| 老鹰茶是什么茶| 什么叫信仰| 哀大莫过于心死是什么意思| 真菌感染用什么药好| 固涩是什么意思| 波长是什么| 巴沙鱼为什么不能吃| 金的部首是什么| 三尖瓣关闭不全是什么意思| 维生素b6治什么病| 臭虫怕什么东西| 北京的区长是什么级别| 黔驴技穷是什么意思| 肠绞痛什么原因引起的| 儿童c反应蛋白高说明什么| 口腔检查挂什么科| 人为什么会困| 泌尿外科看什么病| 氨咖黄敏胶囊是治什么的| 什么是皮包公司| 7月5日是什么日子| 梦见袜子破了是什么意思| 为什么尽量抽混合型烟| 牛肉配什么菜包饺子好吃| 腋臭是什么原因引起的| 基尼系数是什么意思| 白细胞减少是什么原因| 黄金五行属什么| 甲减检查什么项目| 追求完美的人什么性格| 什么是黑科技| 免疫十一项都检查什么| 介质是什么意思| 铅华是什么意思| 正名是什么意思| zhr是什么牌子的鞋| 长期便秘吃什么药效果最好| 质变是什么意思| 老人大便失禁是什么原因| 怀孕初期要注意什么| 长期上夜班对身体有什么危害| 海蓝之谜适合什么年龄| 狗为什么喜欢吃屎| 百度Jump to content

暴风影音vip账号分享2017.04.18免费VIP账号共享

From Wikipedia, the free encyclopedia
(Redirected from Mean-squared error)
百度 根据国家新闻出版广电总局《关于开展新闻记者证2017年度核验工作的通知》要求,我单位《中国经济周刊》杂志社已对持有记者证人员进行严格审核,现将我单位通过年度核验的人员名单进行公示,公示期2018年2月26日3月7日。

In statistics, the mean squared error (MSE)[1] or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the true value. MSE is a risk function, corresponding to the expected value of the squared error loss.[2] The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate.[3] In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution).

The MSE is a measure of the quality of an estimator. As it is derived from the square of Euclidean distance, it is always a positive value that decreases as the error approaches zero.

The MSE is the second moment (about the origin) of the error, and thus incorporates both the variance of the estimator (how widely spread the estimates are from one data sample to another) and its bias (how far off the average estimated value is from the true value).[citation needed] For an unbiased estimator, the MSE is the variance of the estimator. Like the variance, MSE has the same units of measurement as the square of the quantity being estimated. In an analogy to standard deviation, taking the square root of MSE yields the root-mean-square error or root-mean-square deviation (RMSE or RMSD), which has the same units as the quantity being estimated; for an unbiased estimator, the RMSE is the square root of the variance, known as the standard error.

Definition and basic properties

[edit]

The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled). In the context of prediction, understanding the prediction interval can also be useful as it provides a range within which a future observation will fall, with a certain probability. The definition of an MSE differs according to whether one is describing a predictor or an estimator.

Predictor

[edit]

If a vector of predictions is generated from a sample of data points on all variables, and is the vector of observed values of the variable being predicted, with being the predicted values (e.g. as from a least-squares fit), then the within-sample MSE of the predictor is computed as

In other words, the MSE is the mean of the squares of the errors . This is an easily computable quantity for a particular sample (and hence is sample-dependent).

In matrix notation,

where is and is a column vector.

The MSE can also be computed on q data points that were not used in estimating the model, either because they were held back for this purpose, or because these data have been newly obtained. Within this process, known as cross-validation, the MSE is often called the test MSE,[4] and is computed as

Estimator

[edit]

The MSE of an estimator with respect to an unknown parameter is defined as[1]

This definition depends on the unknown parameter, therefore the MSE is a priori property of an estimator. The MSE could be a function of unknown parameters, in which case any estimator of the MSE based on estimates of these parameters would be a function of the data (and thus a random variable). If the estimator is derived as a sample statistic and is used to estimate some population parameter, then the expectation is with respect to the sampling distribution of the sample statistic.

The MSE can be written as the sum of the variance of the estimator and the squared bias of the estimator, providing a useful way to calculate the MSE and implying that in the case of unbiased estimators, the MSE and variance are equivalent.[5]

Proof of variance and bias relationship

[edit]

An even shorter proof can be achieved using the well-known formula that for a random variable , . By substituting with, , we have

But in real modeling case, MSE could be described as the addition of model variance, model bias, and irreducible uncertainty (see Bias–variance tradeoff). According to the relationship, the MSE of the estimators could be simply used for the efficiency comparison, which includes the information of estimator variance and bias. This is called MSE criterion.

In regression

[edit]

In regression analysis, plotting is a more natural way to view the overall trend of the whole data. The mean of the distance from each point to the predicted regression model can be calculated, and shown as the mean squared error. The squaring is critical to reduce the complexity with negative signs. To minimize MSE, the model could be more accurate, which would mean the model is closer to actual data. One example of a linear regression using this method is the least squares method—which evaluates appropriateness of linear regression model to model bivariate dataset,[6] but whose limitation is related to known distribution of the data.

The term mean squared error is sometimes used to refer to the unbiased estimate of error variance: the residual sum of squares divided by the number of degrees of freedom. This definition for a known, computed quantity differs from the above definition for the computed MSE of a predictor, in that a different denominator is used. The denominator is the sample size reduced by the number of model parameters estimated from the same data, (n?p) for p regressors or (n?p?1) if an intercept is used (see errors and residuals in statistics for more details).[7] Although the MSE (as defined in this article) is not an unbiased estimator of the error variance, it is consistent, given the consistency of the predictor.

In regression analysis, "mean squared error", often referred to as mean squared prediction error or "out-of-sample mean squared error", can also refer to the mean value of the squared deviations of the predictions from the true values, over an out-of-sample test space, generated by a model estimated over a particular sample space. This also is a known, computed quantity, and it varies by sample and by out-of-sample test space.

In the context of gradient descent algorithms, it is common to introduce a factor of to the MSE for ease of computation after taking the derivative. So a value which is technically half the mean of squared errors may be called the MSE.

Examples

[edit]

Mean

[edit]

Suppose we have a random sample of size from a population, . Suppose the sample units were chosen with replacement. That is, the units are selected one at a time, and previously selected units are still eligible for selection for all draws. The usual estimator for the population mean is the sample average

which has an expected value equal to the true mean (so it is unbiased) and a mean squared error of

where is the population variance.

For a Gaussian distribution this is the best unbiased estimator of the population mean, that is the one with the lowest MSE (and hence variance) among all unbiased estimators. One can check that the MSE above equals the inverse of the Fisher information (see Cramér–Rao bound). But the same sample mean is not the best estimator of the population mean, say, for a uniform distribution.

Variance

[edit]

The usual estimator for the variance is the corrected sample variance:

This is unbiased (its expected value is ), hence also called the unbiased sample variance, and its MSE is[8]

where is the fourth central moment of the distribution or population, and is the excess kurtosis.

However, one can use other estimators for which are proportional to , and an appropriate choice can always give a lower mean squared error. If we define

then we calculate:

This is minimized when

For a Gaussian distribution, where , this means that the MSE is minimized when dividing the sum by . The minimum excess kurtosis is ,[a] which is achieved by a Bernoulli distribution with p = 1/2 (a coin flip), and the MSE is minimized for Hence regardless of the kurtosis, we get a "better" estimate (in the sense of having a lower MSE) by scaling down the unbiased estimator a little bit; this is a simple example of a shrinkage estimator: one "shrinks" the estimator towards zero (scales down the unbiased estimator).

Further, while the corrected sample variance is the best unbiased estimator (minimum mean squared error among unbiased estimators) of variance for Gaussian distributions, if the distribution is not Gaussian, then even among unbiased estimators, the best unbiased estimator of the variance may not be

Gaussian distribution

[edit]

The following table gives several estimators of the true parameters of the population, μ and σ2, for the Gaussian case.[9]

True value Estimator Mean squared error
= the unbiased estimator of the population mean,
= the unbiased estimator of the population variance,
= the biased estimator of the population variance,
= the biased estimator of the population variance,

Interpretation

[edit]

An MSE of zero, meaning that the estimator predicts observations of the parameter with perfect accuracy, is ideal (but typically not possible).

Values of MSE may be used for comparative purposes. Two or more statistical models may be compared using their MSEs—as a measure of how well they explain a given set of observations: An unbiased estimator (estimated from a statistical model) with the smallest variance among all unbiased estimators is the best unbiased estimator or MVUE (Minimum-Variance Unbiased Estimator).

Both analysis of variance and linear regression techniques estimate the MSE as part of the analysis and use the estimated MSE to determine the statistical significance of the factors or predictors under study. The goal of experimental design is to construct experiments in such a way that when the observations are analyzed, the MSE is close to zero relative to the magnitude of at least one of the estimated treatment effects.

In one-way analysis of variance, MSE can be calculated by the division of the sum of squared errors and the degree of freedom. Also, the f-value is the ratio of the mean squared treatment and the MSE.

MSE is also used in several stepwise regression techniques as part of the determination as to how many predictors from a candidate set to include in a model for a given set of observations.

Applications

[edit]

Minimizing MSE is a key criterion in selecting estimators; see minimum mean-square error. Among unbiased estimators, minimizing the MSE is equivalent to minimizing the variance, and the estimator that does this is the minimum variance unbiased estimator. However, a biased estimator may have lower MSE; see estimator bias.

In statistical modelling the MSE can represent the difference between the actual observations and the observation values predicted by the model. In this context, it is used to determine the extent to which the model fits the data as well as whether removing some explanatory variables is possible without significantly harming the model's predictive ability.

In forecasting and prediction, the Brier score is a measure of forecast skill based on MSE.

Loss function

[edit]

Squared error loss is one of the most widely used loss functions in statistics, though its widespread use stems more from mathematical convenience than considerations of actual loss in applications. Carl Friedrich Gauss, who introduced the use of mean squared error, was aware of its arbitrariness and was in agreement with objections to it on these grounds.[3] The mathematical benefits of mean squared error are particularly evident in its use at analyzing the performance of linear regression, as it allows one to partition the variation in a dataset into variation explained by the model and variation explained by randomness.

Criticism

[edit]

The use of mean squared error without question has been criticized by the decision theorist James Berger. Mean squared error is the negative of the expected value of one specific utility function, the quadratic utility function, which may not be the appropriate utility function to use under a given set of circumstances. There are, however, some scenarios where mean squared error can serve as a good approximation to a loss function occurring naturally in an application.[10]

Like variance, mean squared error has the disadvantage of heavily weighting outliers.[11] This is a result of the squaring of each term, which effectively weights large errors more heavily than small ones. This property, undesirable in many applications, has led researchers to use alternatives such as the mean absolute error, or those based on the median.

See also

[edit]

Notes

[edit]
  1. ^ This can be proved by Jensen's inequality as follows. The fourth central moment is an upper bound for the square of variance, so that the least value for their ratio is one, therefore, the least value for the excess kurtosis is ?2, achieved, for instance, by a Bernoulli with p=1/2.

References

[edit]
  1. ^ a b "Mean Squared Error (MSE)". www.probabilitycourse.com. Retrieved 2025-08-06.
  2. ^ Bickel, Peter J.; Doksum, Kjell A. (2015). Mathematical Statistics: Basic Ideas and Selected Topics. Vol. I (Second ed.). p. 20. If we use quadratic loss, our risk function is called the mean squared error (MSE) ...
  3. ^ a b Lehmann, E. L.; Casella, George (1998). Theory of Point Estimation (2nd ed.). New York: Springer. ISBN 978-0-387-98502-2. MR 1639875.
  4. ^ Gareth, James; Witten, Daniela; Hastie, Trevor; Tibshirani, Rob (2021). An Introduction to Statistical Learning: with Applications in R. Springer. ISBN 978-1071614174.
  5. ^ Wackerly, Dennis; Mendenhall, William; Scheaffer, Richard L. (2008). Mathematical Statistics with Applications (7 ed.). Belmont, CA, USA: Thomson Higher Education. ISBN 978-0-495-38508-0.
  6. ^ A modern introduction to probability and statistics : understanding why and how. Dekking, Michel, 1946-. London: Springer. 2005. ISBN 978-1-85233-896-1. OCLC 262680588.{{cite book}}: CS1 maint: others (link)
  7. ^ Steel, R.G.D, and Torrie, J. H., Principles and Procedures of Statistics with Special Reference to the Biological Sciences., McGraw Hill, 1960, page 288.
  8. ^ Mood, A.; Graybill, F.; Boes, D. (1974). Introduction to the Theory of Statistics (3rd ed.). McGraw-Hill. p. 229.
  9. ^ DeGroot, Morris H. (1980). Probability and Statistics (2nd ed.). Addison-Wesley.
  10. ^ Berger, James O. (1985). "2.4.2 Certain Standard Loss Functions". Statistical Decision Theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. p. 60. ISBN 978-0-387-96098-2. MR 0804611.
  11. ^ Bermejo, Sergio; Cabestany, Joan (2001). "Oriented principal component analysis for large margin classifiers". Neural Networks. 14 (10): 1447–1461. doi:10.1016/S0893-6080(01)00106-X. PMID 11771723.
伏羲女娲是什么关系 四大洋分别是什么 断章取义是什么生肖 曹操字什么 其实不然是什么意思
什么是紫河车 肺部积水是什么原因引起的 吃巧克力有什么好处 什么是重生 给猫咪取什么名字好听
乐高是什么 奶粉罐可以做什么手工 什么是淡盐水 动土破土是什么意思 ssr是什么意思
南什么北什么的成语 臭虫长什么样子图片 什么的大圆盘 人瘦是什么原因造成的 孕妇有血窦要注意什么
爬虫是什么hcv7jop9ns7r.cn 瑞舒伐他汀什么时候吃最好hcv9jop8ns3r.cn 为什么会有狐臭hcv9jop7ns1r.cn 六十岁是什么之年hcv8jop8ns2r.cn 减肥吃什么药效果最好hcv8jop1ns6r.cn
献血有什么坏处adwl56.com 天天喝酒会得什么病hcv9jop8ns3r.cn 色字头上一把刀什么意思hcv8jop3ns1r.cn 恋物癖是什么hcv7jop6ns1r.cn 肚子胀气是什么原因hcv8jop9ns6r.cn
春节是什么时候hcv7jop6ns7r.cn 梦到钓鱼是什么征兆hcv8jop6ns7r.cn 幽门螺杆菌阳性是什么意思hcv9jop2ns1r.cn 十一月六号是什么星座hcv9jop4ns8r.cn 甘油三酯高吃什么药效果好hcv9jop0ns2r.cn
牛头马面指什么生肖hcv8jop8ns5r.cn 92属什么qingzhougame.com 怀孕第一个月有什么症状hcv8jop2ns3r.cn lycra是什么面料hcv9jop6ns0r.cn 后背痒是什么病的前兆hcv9jop4ns7r.cn
百度