江西有什么景点| 满族不吃什么肉| 肝衰竭是什么原因引起的| 2004年是什么命| 润滑油是什么| 弥漫性病变是什么意思| 阴毛是什么| 什么是高潮| 淋巴结是什么意思| 一周年祭日有什么讲究| 4月6日什么星座| 鲜为人知是什么意思| 白头发吃什么维生素| 长期湿热会引起什么病| 肝区回声密集是什么意思| 糖耐量受损是什么意思| 温煦是什么意思| 甲沟炎是什么原因引起的| 散光是什么| 螨虫长什么样子| 梗阻性黄疸是什么病| 吃二甲双胍为什么会瘦| 叶酸是什么| 眼睑痉挛是什么原因造成的| 玥字属于五行属什么| 什么情况吃通宣理肺丸| 现在有什么水果| 纤支镜检查是用来查什么的| 小孩拉肚子吃什么药效果好| 害怕的近义词是什么| 什么东西可以去口臭呀| 千卡是什么意思| 茯苓泡水喝有什么功效| 鱼油是什么鱼提炼的| 半夜容易醒是什么原因| 雾化对小孩有什么影响或者副作用| 胃结石有什么症状表现| 腹泻是什么原因引起的| 狐惑病是什么病| 1069是什么意思| 37岁属什么| 雄五行属什么| 1996属鼠的是什么命| cla是什么| alan英文名什么意思| 核糖体由什么组成| 刁子鱼是什么鱼| 喝红茶对身体有什么好处| 我的梦想是什么| 春光乍泄是什么意思| tomorrow什么意思| 安宫丸什么时候吃| 办理暂住证需要什么材料| 腋下长痘痘是什么原因| 男性做彩超要检查什么| 时乖命蹇是什么意思| 十二星座什么第一名| 41年属什么生肖| 掂过碌蔗是什么意思| 强身之道的强是什么意思| 卡介苗为什么会留疤| fashion什么意思| 眼睛散光是什么意思| 怀孕早期需要注意什么| 什么是黄体酮| 脑控是什么| 金鸡独立是什么意思| 淋巴细胞偏低什么意思| 什么是业障| 替拉依是什么药| 窦性心律过缓是什么意思| 心肌供血不足是什么原因造成的| 中国第五大发明是什么| 蛰居是什么意思| 发膜是什么| 排卵试纸什么时候测最准确| 鹌鹑吃什么| 球麻痹是什么病| 叶酸偏高有什么影响| 左眼皮跳什么预兆| 马弁是什么意思| 晚上7点是什么时辰| 做梦梦到踩到屎是什么意思| 42岁属什么| 病态是什么意思| 盛世美颜是什么意思| 水命和什么命最配| 龙虎山是什么地貌| 毒唯什么意思| 腿部抽筋是什么原因| 插茱萸是什么意思| 1997年出生的属什么| 煞是什么意思| 依然如故的故是什么意思| 孕妇吃坚果对胎儿有什么好处| 阴道痒吃什么药| 想什么| 什么是一二三级医院| 老过敏是缺什么维生素| 中国肤药膏有什么功效| 走仕途是什么意思| 为什么晚上不能剪指甲| 做梦梦到水是什么征兆| 在岸人民币和离岸人民币什么意思| 什么病不能吃松花粉| 7.1是什么日子| 贿赂是什么意思| 时来运转是什么意思| 妇科菌群失调吃什么药| 火龙果是什么颜色| mm表示什么| 八月十五是什么日子| 支原体感染咳嗽吃什么药| lauren是什么意思| 8月29是什么星座| 人为什么会死| 发热门诊属于什么科| 黄瓜和什么一起炒好吃| 什么是双开| 牙龈肿痛吃什么中成药| 子宫内膜回声不均匀是什么意思| 1980年是什么年| 梦见和别人结婚是什么意思| 六月十六是什么日子| 牛瓦沟是什么部位| 斑秃吃什么药| 吃藕粉对身体有什么好处| 腐男是什么意思| 新生儿一直哭闹是什么原因| 小腿浮肿吃什么药最好| 上海有什么好玩的地方旅游景点| 大便不正常是什么原因造成的| 腮帮子疼吃什么药| 1977属什么| 高血压什么意思| 平常平时叫什么日| 咒怨讲的是什么故事| 隐翅虫是什么| 田野是什么意思| 为什么身上会痒| atp 是什么| 肌肉萎缩吃什么药| 甲减长期服用优甲乐有什么危害| 紫罗兰是什么颜色| 什么远什么长| 长绒棉和全棉什么区别| 1993年五行属什么| 月经不来什么原因| 下肢肿胀是什么原因| 飞蛾扑火是什么意思| 抗缪勒氏管激素是检查什么的| 血浓度高是什么原因| 肾出问题了有什么症状| 广州机场叫什么名字| cn是什么| 公积金缴存基数什么意思| 慢性病是什么意思| 丰富多腔的腔是什么意思| 翻白草治什么病| cba是什么意思| 过期的啤酒有什么用处| 界限性脑电图是什么意思| 1.20是什么星座| 老鼠最怕什么东西| 右眼皮跳是什么预兆| 李克勤属什么生肖| 宝宝拉肚子有粘液是什么原因| 为什么会晕3d| 大便细是什么原因| 什么只好什么| 肉瘤是什么样子图片| iga肾病是什么意思| 否极泰来是什么生肖| 总出虚汗什么原因怎么解决| 治胃病吃什么药| belle是什么牌子| 什么野菜降血糖| 胃有灼热感是什么原因| 血管为什么是青色的| 有机和无机是什么意思| 来月经不能吃什么| 说话不清楚去医院挂什么科| 隔离的作用是什么| 什么是活检| 恐龙是什么时候灭绝| 尿微量白蛋白高是什么意思| 阴挺是什么意思| pyq是什么意思| hpv亚型是什么意思| 教育的目的是什么| 红烧排骨用什么排骨比较好| juicy什么意思| 尿道口红肿用什么药| 吉利丁片是什么| 花斑癣用什么药膏好| 喝什么去湿气最好最快| 脸上长斑的原因是什么引起的| 女生的隐私部位长什么样| 胃胀气用什么药最好| 一进大门看见什么最好| 这是什么皮肤病| 便秘吃什么最快排便| 痛风为什么要禁欲| 肚子咕噜咕噜响是什么原因| 居居是什么意思| 小翅膀车标是什么车| 为什么有眼袋是什么原因引起的| 游戏bp是什么意思| 唾液粘稠是什么原因| 天秤男和什么星座最配| 上相是什么意思| 韩国是什么民族| 膀胱炎是什么症状表现| 梦见明星是什么预兆| 呕吐发烧是什么原因| 跳蚤什么样| 植树造林的好处是什么| 脖子里面有结节是什么病| 白酒不能和什么一起吃| 冤家路窄是什么生肖| 小妾是什么意思| 人巨细胞病毒是什么病| 什么人不能吃狗肉| 睡觉磨牙是什么原因| 这什么情况| 朱门是什么意思| 减肥期间应该吃什么| 难免流产什么意思| 乌龟为什么喜欢叠罗汉| k粉是什么| 但爱鲈鱼美的但是什么意思| 右脸麻木是什么原因| 下体痒是什么原因| 消肿用什么药| 避孕套和安全套有什么区别| 用醋泡脚有什么好处| 肚子痛什么原因| 30如狼40如虎是什么意思| 外阴炎用什么药膏| 斤加一笔是什么字| 什么牌助听器好| 屈光不正是什么| 公分是什么意思| 保健是什么意思| nt值代表什么| 阴道镜是什么| 天疱疮是什么病| 针清是什么| 额头容易出汗是什么原因| 胃病忌什么| 为什么会梦到前男友| 女人吃什么| 辩证是什么意思| 嗣后是什么意思| 行房时间短吃什么药| 96年五行属什么| 肾湿热吃什么中成药| 1972年属什么生肖| 2004年是什么年| 后脑勺痛什么原因引起的| 复查是什么意思| 阿拉蕾什么意思| 砧板是什么工作| 捋是什么意思| 百度Jump to content

陕西32个项目获国家科技奖励 255项获省科技奖

From Wikipedia, the free encyclopedia
(Redirected from Objective function)
百度 因此,他们关了店面,紧接着我可以像你们保证,就像2014年我预期得那样,店面闲置的结果是租金将下滑,店面业主们将认真寻找合适的租客,否则他们的店面将继续闲置。

In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function)[1] is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event. An optimization problem seeks to minimize a loss function. An objective function is either a loss function or its opposite (in specific domains, variously called a reward function, a profit function, a utility function, a fitness function, etc.), in which case it is to be maximized. The loss function could include terms from several levels of the hierarchy.

In statistics, typically a loss function is used for parameter estimation, and the event in question is some function of the difference between estimated and true values for an instance of data. The concept, as old as Laplace, was reintroduced in statistics by Abraham Wald in the middle of the 20th century.[2] In the context of economics, for example, this is usually economic cost or regret. In classification, it is the penalty for an incorrect classification of an example. In actuarial science, it is used in an insurance context to model benefits paid over premiums, particularly since the works of Harald Cramér in the 1920s.[3] In optimal control, the loss is the penalty for failing to achieve a desired value. In financial risk management, the function is mapped to a monetary loss.

Comparison of common loss functions (MAE, SMAE, Huber loss, and log-cosh loss) used for regression

Examples

[edit]

Regret

[edit]

Leonard J. Savage argued that using non-Bayesian methods such as minimax, the loss function should be based on the idea of regret, i.e., the loss associated with a decision should be the difference between the consequences of the best decision that could have been made under circumstances will be known and the decision that was in fact taken before they were known.

Quadratic loss function

[edit]

The use of a quadratic loss function is common, for example when using least squares techniques. It is often more mathematically tractable than other loss functions because of the properties of variances, as well as being symmetric: an error above the target causes the same loss as the same magnitude of error below the target. If the target is t, then a quadratic loss function is

for some constant C; the value of the constant makes no difference to a decision, and can be ignored by setting it equal to 1. This is also known as the squared error loss (SEL).[1]

Many common statistics, including t-tests, regression models, design of experiments, and much else, use least squares methods applied using linear regression theory, which is based on the quadratic loss function.

The quadratic loss function is also used in linear-quadratic optimal control problems. In these problems, even in the absence of uncertainty, it may not be possible to achieve the desired values of all target variables. Often loss is expressed as a quadratic form in the deviations of the variables of interest from their desired values; this approach is tractable because it results in linear first-order conditions. In the context of stochastic control, the expected value of the quadratic form is used. The quadratic loss assigns more importance to outliers than to the true data due to its square nature, so alternatives like the Huber, log-cosh and SMAE losses are used when the data has many large outliers.

Effect of using different loss functions, when the data has outliers

0-1 loss function

[edit]

In statistics and decision theory, a frequently used loss function is the 0-1 loss function

using Iverson bracket notation, i.e. it evaluates to 1 when , and 0 otherwise.

Constructing loss and objective functions

[edit]

In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture.[4] The existing methods for constructing objective functions are collected in the proceedings of two dedicated conferences.[5][6] In particular, Andranik Tangian showed that the most usable objective functions — quadratic and additive — are determined by a few indifference points. He used this property in the models for constructing these objective functions from either ordinal or cardinal data that were elicited through computer-assisted interviews with decision makers.[7][8] Among other things, he constructed objective functions to optimally distribute budgets for 16 Westfalian universities[9] and the European subsidies for equalizing unemployment rates among 271 German regions.[10]

Expected loss

[edit]

In some contexts, the value of the loss function itself is a random quantity because it depends on the outcome of a random variable X.

Statistics

[edit]

Both frequentist and Bayesian statistical theory involve making a decision based on the expected value of the loss function; however, this quantity is defined differently under the two paradigms.

Frequentist expected loss

[edit]

We first define the expected loss in the frequentist context. It is obtained by taking the expected value with respect to the probability distribution, Pθ, of the observed data, X. This is also referred to as the risk function[11][12][13][14] of the decision rule δ and the parameter θ. Here the decision rule depends on the outcome of X. The risk function is given by:

Here, θ is a fixed but possibly unknown state of nature, X is a vector of observations stochastically drawn from a population, is the expectation over all population values of X, dPθ is a probability measure over the event space of X (parametrized by θ) and the integral is evaluated over the entire support of X.

Bayes Risk

[edit]

In a Bayesian approach, the expectation is calculated using the prior distribution π* of the parameter θ:

where m(x) is known as the predictive likelihood wherein θ has been "integrated out," π* (θ | x) is the posterior distribution, and the order of integration has been changed. One then should choose the action a* which minimises this expected loss, which is referred to as Bayes Risk. In the latter equation, the integrand inside dx is known as the Posterior Risk, and minimising it with respect to decision a also minimizes the overall Bayes Risk. This optimal decision, a* is known as the Bayes (decision) Rule - it minimises the average loss over all possible states of nature θ, over all possible (probability-weighted) data outcomes. One advantage of the Bayesian approach is to that one need only choose the optimal action under the actual observed data to obtain a uniformly optimal one, whereas choosing the actual frequentist optimal decision rule as a function of all possible observations, is a much more difficult problem. Of equal importance though, the Bayes Rule reflects consideration of loss outcomes under different states of nature, θ.

Examples in statistics

[edit]
  • For a scalar parameter θ, a decision function whose output is an estimate of θ, and a quadratic loss function (squared error loss) the risk function becomes the mean squared error of the estimate, An Estimator found by minimizing the Mean squared error estimates the Posterior distribution's mean.
  • In density estimation, the unknown parameter is probability density itself. The loss function is typically chosen to be a norm in an appropriate function space. For example, for L2 norm, the risk function becomes the mean integrated squared error

Economic choice under uncertainty

[edit]

In economics, decision-making under uncertainty is often modelled using the von Neumann–Morgenstern utility function of the uncertain variable of interest, such as end-of-period wealth. Since the value of this variable is uncertain, so is the value of the utility function; it is the expected value of utility that is maximized.

Decision rules

[edit]

A decision rule makes a choice using an optimality criterion. Some commonly used criteria are:

  • Minimax: Choose the decision rule with the lowest worst loss — that is, minimize the worst-case (maximum possible) loss:
  • Invariance: Choose the decision rule which satisfies an invariance requirement.
  • Choose the decision rule with the lowest average loss (i.e. minimize the expected value of the loss function):

Selecting a loss function

[edit]

Sound statistical practice requires selecting an estimator consistent with the actual acceptable variation experienced in the context of a particular applied problem. Thus, in the applied use of loss functions, selecting which statistical method to use to model an applied problem depends on knowing the losses that will be experienced from being wrong under the problem's particular circumstances.[15]

A common example involves estimating "location". Under typical statistical assumptions, the mean or average is the statistic for estimating location that minimizes the expected loss experienced under the squared-error loss function, while the median is the estimator that minimizes expected loss experienced under the absolute-difference loss function. Still different estimators would be optimal under other, less common circumstances.

In economics, when an agent is risk neutral, the objective function is simply expressed as the expected value of a monetary quantity, such as profit, income, or end-of-period wealth. For risk-averse or risk-loving agents, loss is measured as the negative of a utility function, and the objective function to be optimized is the expected value of utility.

Other measures of cost are possible, for example mortality or morbidity in the field of public health or safety engineering.

For most optimization algorithms, it is desirable to have a loss function that is globally continuous and differentiable.

Two very commonly used loss functions are the squared loss, , and the absolute loss, . However the absolute loss has the disadvantage that it is not differentiable at . The squared loss has the disadvantage that it has the tendency to be dominated by outliers—when summing over a set of 's (as in ), the final sum tends to be the result of a few particularly large a-values, rather than an expression of the average a-value.

The choice of a loss function is not arbitrary. It is very restrictive and sometimes the loss function may be characterized by its desirable properties.[16] Among the choice principles are, for example, the requirement of completeness of the class of symmetric statistics in the case of i.i.d. observations, the principle of complete information, and some others.

W. Edwards Deming and Nassim Nicholas Taleb argue that empirical reality, not nice mathematical properties, should be the sole basis for selecting loss functions, and real losses often are not mathematically nice and are not differentiable, continuous, symmetric, etc. For example, a person who arrives before a plane gate closure can still make the plane, but a person who arrives after can not, a discontinuity and asymmetry which makes arriving slightly late much more costly than arriving slightly early. In drug dosing, the cost of too little drug may be lack of efficacy, while the cost of too much may be tolerable toxicity, another example of asymmetry. Traffic, pipes, beams, ecologies, climates, etc. may tolerate increased load or stress with little noticeable change up to a point, then become backed up or break catastrophically. These situations, Deming and Taleb argue, are common in real-life problems, perhaps more common than classical smooth, continuous, symmetric, differentials cases.[17]

See also

[edit]

References

[edit]
  1. ^ a b Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome H. (2001). The Elements of Statistical Learning. Springer. p. 18. ISBN 0-387-95284-5.
  2. ^ Wald, A. (1950). Statistical Decision Functions. Wiley – via APA Psycnet.
  3. ^ Cramér, H. (1930). On the mathematical theory of risk. Centraltryckeriet.
  4. ^ Frisch, Ragnar (1969). "From utopian theory to practical applications: the case of econometrics". The Nobel Prize–Prize Lecture. Retrieved 15 February 2021.
  5. ^ Tangian, Andranik; Gruber, Josef (1997). Constructing Scalar-Valued Objective Functions. Proceedings of the Third International Conference on Econometric Decision Models: Constructing Scalar-Valued Objective Functions, University of Hagen, held in Katholische Akademie Schwerte September 5–8, 1995. Lecture Notes in Economics and Mathematical Systems. Vol. 453. Berlin: Springer. doi:10.1007/978-3-642-48773-6. ISBN 978-3-540-63061-6.
  6. ^ Tangian, Andranik; Gruber, Josef (2002). Constructing and Applying Objective Functions. Proceedings of the Fourth International Conference on Econometric Decision Models Constructing and Applying Objective Functions, University of Hagen, held in Haus Nordhelle, August, 28 — 31, 2000. Lecture Notes in Economics and Mathematical Systems. Vol. 510. Berlin: Springer. doi:10.1007/978-3-642-56038-5. ISBN 978-3-540-42669-1.
  7. ^ Tangian, Andranik (2002). "Constructing a quasi-concave quadratic objective function from interviewing a decision maker". European Journal of Operational Research. 141 (3): 608–640. doi:10.1016/S0377-2217(01)00185-0. S2CID 39623350.
  8. ^ Tangian, Andranik (2004). "A model for ordinally constructing additive objective functions". European Journal of Operational Research. 159 (2): 476–512. doi:10.1016/S0377-2217(03)00413-2. S2CID 31019036.
  9. ^ Tangian, Andranik (2004). "Redistribution of university budgets with respect to the status quo". European Journal of Operational Research. 157 (2): 409–428. doi:10.1016/S0377-2217(03)00271-6.
  10. ^ Tangian, Andranik (2008). "Multi-criteria optimization of regional employment policy: A simulation analysis for Germany". Review of Urban and Regional Development. 20 (2): 103–122. doi:10.1111/j.1467-940X.2008.00144.x.
  11. ^ Nikulin, M.S. (2001) [1994], "Risk of a statistical procedure", Encyclopedia of Mathematics, EMS Press
  12. ^ Berger, James O. (1985). Statistical decision theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. Bibcode:1985sdtb.book.....B. ISBN 978-0-387-96098-2. MR 0804611.
  13. ^ DeGroot, Morris (2004) [1970]. Optimal Statistical Decisions. Wiley Classics Library. ISBN 978-0-471-68029-1. MR 2288194.
  14. ^ Robert, Christian P. (2007). The Bayesian Choice. Springer Texts in Statistics (2nd ed.). New York: Springer. doi:10.1007/0-387-71599-1. ISBN 978-0-387-95231-4. MR 1835885.
  15. ^ Pfanzagl, J. (1994). Parametric Statistical Theory. Berlin: Walter de Gruyter. ISBN 978-3-11-013863-4.
  16. ^ Detailed information on mathematical principles of the loss function choice is given in Chapter 2 of the book Klebanov, B.; Rachev, Svetlozat T.; Fabozzi, Frank J. (2009). Robust and Non-Robust Models in Statistics. New York: Nova Scientific Publishers, Inc. (and references there).
  17. ^ Deming, W. Edwards (2000). Out of the Crisis. The MIT Press. ISBN 9780262541152.

Further reading

[edit]
  • Waud, Roger N. (1976). "Asymmetric Policymaker Utility Functions and Optimal Policy under Uncertainty". Econometrica. 44 (1): 53–66. doi:10.2307/1911380. JSTOR 1911380.
勃起不坚吃什么药 腰疼贴什么膏药 炙什么意思 人间烟火是什么意思 kick什么意思
除外是什么意思 豆包什么意思 来大姨妈适合吃什么水果 网球肘是什么症状 马蜂蛰了用什么药
属鸡的贵人是什么属相 孕妇缺铁性贫血对胎儿有什么影响 鱼腥草有什么用处 为什么不要看电焊火花 眼睛飞蚊症用什么药能治好
老汉推车是什么姿势 膻是什么意思 什么方法可以快速入睡 asa是什么意思 丙辰是什么时辰
什么原因引起耳石症hcv8jop4ns6r.cn 肛裂用什么药膏hcv8jop3ns4r.cn 吃恩替卡韦有什么副作用hcv8jop8ns6r.cn 为什么会得肠梗阻hcv7jop6ns0r.cn 农历五月初五是什么星座hcv9jop7ns1r.cn
puppies什么意思bjhyzcsm.com 对偶是什么hcv8jop7ns5r.cn hbeab阳性是什么意思hcv7jop9ns7r.cn 这个梗是什么意思hcv9jop4ns0r.cn 妊娠高血压对胎儿有什么影响hcv8jop5ns1r.cn
喜用神什么意思hcv7jop9ns3r.cn 红红的眼睛是什么生肖hcv7jop9ns8r.cn 小肠炖什么好吃又营养hcv8jop7ns0r.cn 社恐到底在害怕什么hcv9jop0ns6r.cn 吃什么能降血压最有效hcv9jop5ns1r.cn
fmc是什么意思hcv8jop0ns3r.cn 樊胜美是什么电视剧hcv8jop6ns0r.cn 洗劫一空是什么意思hcv7jop6ns2r.cn 打榜是什么意思hcv9jop2ns7r.cn 为什么不开朱元璋的墓hcv9jop4ns2r.cn
百度