腔调是什么意思| 儿童咽峡炎吃什么药| 红色菜叶的菜是什么菜| 狐假虎威什么意思| 吃完海鲜不能吃什么水果| 胡子发黄是什么原因| 太作了是什么意思| 烟头属于什么垃圾| 健康管理是做什么的| 红菜是什么菜| 气血不足吃什么水果| 冬至是什么时候| 吃什么对痔疮好得快| 骨皮质断裂是什么意思| 本钱是什么意思| 南京有什么好玩的地方| 缺铁性贫血吃什么食物| 象牙塔比喻什么| 什么是黑科技| 膝盖痛吃什么| 法西斯是什么意思啊| 阳气不足是什么意思| 早上醒来手麻是什么原因| 四川的耗儿鱼是什么鱼| 餐后胆囊是什么意思| 梦见拖地是什么意思| 腰椎痛用什么药| 为什么现在不吃糖丸了| 印度是什么人种| 拍脑部ct挂什么科| 整天放屁是什么原因| 个体差异是什么意思| 杨梅泡酒有什么功效和作用| 脸上长痘痘去医院挂什么科| 总胆红素高是怎么回事有什么危害| 阴阳代表什么数字| 寻麻疹涂什么药膏| 天麻有什么作用与功效| 阴离子是什么| 肠胃紊乱吃什么药| 血糖高不能吃什么| 大拇指疼是什么原因| 血糖低吃什么补得最快| 佛山有什么特产| cm代表什么单位| 生理期可以吃什么水果| 眼眶周围发黑什么原因| 冲击波治疗有什么效果| 氧气是什么| 稚嫩是什么意思| 女性排卵期有什么表现| 长胸毛的男人代表什么| 包皮过长会有什么影响| 弹性工作是什么意思| 伽利略是什么学家| 吃什么补白细胞效果最好| 瓷娃娃什么意思| 为什么会长鸡眼| 尿黄是什么原因男性| 2d是什么意思| 喝金银花有什么好处| 月经期同房有什么危害| 枉然是什么意思| 站久了腰疼是什么原因| 知秋是什么意思| 嫂嫂是什么意思| 瓜娃子是什么意思| 奴才是什么意思| 上半身皮肤痒什么原因| 阿迪达斯和三叶草有什么区别| 促排药什么时候开始吃| 雏形是什么意思| 赘肉是什么意思| 老学究什么意思| 丹毒用什么抗生素| 当兵有什么好处| 康妇炎胶囊主治什么| 肉卷炒什么菜好吃| 前置胎盘需要注意什么| 一什么蝉| 正印是什么意思| 红细胞高是什么意思| 系统b超主要检查什么| 女生为什么有喉结| normal什么意思| 女人切除子宫有什么影响| 呼吸有异味是什么原因| supra是什么牌子| 子宫颈肥大有什么危害| 硅胶是什么材料做的| 吃天麻对身体有什么好处| 黑油是什么油| 灰蓝色是什么颜色| 穿刺检查是什么意思| 不规则抗体筛查是什么意思| 肝脂肪浸润是什么意思| 多肽是什么意思| 属猪的幸运颜色是什么| 香港脚是什么| 羊五行属什么| 什么酷暑| audrey是什么意思| 中蛊的人有什么症状| 今年30岁属什么生肖| 四维空间是什么样子| 沦丧是什么意思| 蚯蚓用什么呼吸| 挥霍是什么意思| 内能与什么因素有关| 为什么要闰月| 9527是什么梗| 献血浆为什么会给钱| 什么是it行业| 去医院点痣挂什么科| 突然抽搐失去意识是什么原因| 手脚冰凉吃什么药| 考试吃什么| biemlfdlkk是什么牌子| nibpdia过高是什么意思| 奶绿是什么| 湿疹是什么病的前兆| 一垒二垒三垒全垒打是什么意思| 胆结石吃什么药可以化掉结石| 滋养细胞疾病是什么病| 一直流口水是什么原因| 人的脾脏起什么作用| 哺乳期吃什么奶水多| 五指毛桃是什么| 腰肌劳损是什么症状| 胎儿胆囊偏小有什么影响| 喉咙有烧灼感吃什么药| 手肿是什么原因引起的| 一什么蘑菇| 薄姬为什么讨厌窦漪房| 一什么杏子| 生姜有什么功效| 子时是什么时间| 回头鱼是什么鱼| 体育总局局长什么级别| 小鸡仔吃什么| 什么是上火| 洁身自爱是什么生肖| 楔形是什么形状图片| 属虎适合佩戴什么饰品| 榴莲为什么苦| 差是什么意思| 闲云野鹤指什么生肖| 多囊卵巢有什么症状表现| 平肝什么意思| 喝什么降火| 凉拌菜用什么醋最好| 甘油三酯是指什么| 总出汗是什么原因| 学生证件号码是什么| 利而不害为而不争是什么意思| 关节痛挂号挂什么科| 天天拉肚子是什么原因| 如何查自己是什么命格| 两千年前是什么朝代| 女性尿急憋不住尿是什么原因| 女人左手心痒预示什么| ua医学上是什么意思| 五郎属什么生肖| 1932年属什么| 白热化阶段是什么意思| 腿长身子短有什么说法| 末梢神经炎是什么症状| cva医学上是什么意思| 复三上坟是什么意思| 卧是什么意思| 内分泌科属于什么科| npv是什么意思| 令人唏嘘是什么意思| 不孕不育有什么症状| 韭黄和韭菜有什么区别| 夜晚尿频尿多是什么原因| 吃什么大补| 维生素b6吃多了有什么副作用| 胃窦黄斑瘤是什么病| 武汉都有什么大学| 苦杏仁味是什么中毒| cnn是什么意思| 首肯是什么意思| 质子治疗是什么意思| 生孩子前要注意什么| 颠了是什么意思| 属猴和什么属相最配| 7月20号是什么星座| 吃山竹有什么好处和坏处| 布鲁斯是什么| 男模是什么| 什么爱| 脚臭用什么洗效果最好| 政协主席是什么级别| 820是什么意思| 脱发应该挂什么科室| 舅舅和外甥女是什么关系| 老虎凳是什么| 哮喘是什么原因引起的| 什么地跳| 冬至夏至什么意思| 药物过敏挂什么科| 牙龈肿痛吃什么药| hv是什么意思| pad是什么| 鼻子突然出血是什么原因| ncu病房是什么意思| 早上5点多是什么时辰| 什么是心理健康| 滑膜炎用什么膏药好| 为什么北京是首都| 脸肿是什么病| 小月子能吃什么水果| 蝙蝠飞进家里预示什么| 六味地黄丸是治什么病| 为什么镜子不能对着床| 喉咙老是有白痰是什么原因| 干咳吃什么药最有效| 常吃阿司匹林有什么副作用| 中暑吃什么药见效快| josiny是什么牌子| 显现是什么意思| 戌是什么意思| 慢性咽炎是什么症状| seiko手表是什么牌子| 12月6号是什么星座| 上火是什么意思| 津液不足吃什么中成药| 梦见手机坏了是什么意思| 养牛仔裤是什么意思| 脑瘤有什么症状| 梦呓是什么意思| 减肥为什么会口臭| twin是什么意思| 碱是什么东西| 未时是什么时辰| 肝胆相照什么意思| 意下如何什么意思| 众所周知是什么生肖| 彩超挂什么科| 西梅什么时候成熟| 作曲是什么意思| 吃什么消除肺部结节| 黄连治什么病最好| 五什么四什么| 姨妈期间吃什么水果| 冰妹什么意思| 睚眦必报是什么意思| 胎盘成熟度1级是什么意思| 日字旁和什么有关| 阴阳失调是什么意思| 试管婴儿什么价格| 怀孕了什么时候做检查| 缺钾会有什么症状| 为什么男怕招风耳| 游龙戏凤是什么意思| 650是什么意思| 促进钙吸收吃什么| 做恐怖的梦预示着什么| 焦虑症有什么症状| 补气血吃什么中成药最好| 睡美人最怕什么脑筋急转弯| 对什么有益英语| 一什么事情| 百度Jump to content

糂付眏秸 蚕龟崩秈穦竡み基芠磕猭

From Wikipedia, the free encyclopedia
(Redirected from Parametric plot)
The butterfly curve can be defined by parametric equations of x and y.
百度 实际上这不是刘晓宇头一次在关键比赛中掉链子。

In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point, as functions of one or several variables called parameters.[1]

In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not necessarily, time, and the point describes a curve, called a parametric curve. In the case of two parameters, the point describes a surface, called a parametric surface. In all cases, the equations are collectively called a parametric representation,[2] or parametric system,[3] or parameterization (also spelled parametrization, parametrisation) of the object.[1][4][5]

For example, the equations form a parametric representation of the unit circle, where t is the parameter: A point (x, y) is on the unit circle if and only if there is a value of t such that these two equations generate that point. Sometimes the parametric equations for the individual scalar output variables are combined into a single parametric equation in vectors:

Parametric representations are generally nonunique (see the "Examples in two dimensions" section below), so the same quantities may be expressed by a number of different parameterizations.[1]

In addition to curves and surfaces, parametric equations can describe manifolds and algebraic varieties of higher dimension, with the number of parameters being equal to the dimension of the manifold or variety, and the number of equations being equal to the dimension of the space in which the manifold or variety is considered (for curves the dimension is one and one parameter is used, for surfaces dimension two and two parameters, etc.).

Parametric equations are commonly used in kinematics, where the trajectory of an object is represented by equations depending on time as the parameter. Because of this application, a single parameter is often labeled t; however, parameters can represent other physical quantities (such as geometric variables) or can be selected arbitrarily for convenience. Parameterizations are non-unique; more than one set of parametric equations can specify the same curve.[6]

Implicitization

[edit]

Converting a set of parametric equations to a single implicit equation involves eliminating the variable t from the simultaneous equations This process is called implicitization. If one of these equations can be solved for t, the expression obtained can be substituted into the other equation to obtain an equation involving x and y only: Solving to obtain and using this in gives the explicit equation while more complicated cases will give an implicit equation of the form

If the parametrization is given by rational functions

where p, q, and r are set-wise coprime polynomials, a resultant computation allows one to implicitize. More precisely, the implicit equation is the resultant with respect to t of xr(t) – p(t) and yr(t) – q(t).

In higher dimensions (either more than two coordinates or more than one parameter), the implicitization of rational parametric equations may by done with Gr?bner basis computation; see Gr?bner basis § Implicitization in higher dimension.

To take the example of the circle of radius a, the parametric equations

can be implicitized in terms of x and y by way of the Pythagorean trigonometric identity. With

and we get and thus

which is the standard equation of a circle centered at the origin.

Parametric plane curves

[edit]

Parabola

[edit]

The simplest equation for a parabola,

can be (trivially) parameterized by using a free parameter t, and setting

Explicit equations

[edit]

More generally, any curve given by an explicit equation

can be (trivially) parameterized by using a free parameter t, and setting

Circle

[edit]

A more sophisticated example is the following. Consider the unit circle which is described by the ordinary (Cartesian) equation

This equation can be parameterized as follows:

With the Cartesian equation it is easier to check whether a point lies on the circle or not. With the parametric version it is easier to obtain points on a plot.

In some contexts, parametric equations involving only rational functions (that is fractions of two polynomials) are preferred, if they exist. In the case of the circle, such a rational parameterization is

With this pair of parametric equations, the point (?1, 0) is not represented by a real value of t, but by the limit of x and y when t tends to infinity.

Ellipse

[edit]

An ellipse in canonical position (center at origin, major axis along the x-axis) with semi-axes a and b can be represented parametrically as

An ellipse in general position can be expressed as

as the parameter t varies from 0 to 2π. Here (Xc , Yc) is the center of the ellipse, and φ is the angle between the x-axis and the major axis of the ellipse.

Both parameterizations may be made rational by using the tangent half-angle formula and setting

Lissajous curve

[edit]
A Lissajous curve where kx = 3 and ky = 2.

A Lissajous curve is similar to an ellipse, but the x and y sinusoids are not in phase. In canonical position, a Lissajous curve is given by where kx and ky are constants describing the number of lobes of the figure.

Hyperbola

[edit]

An east-west opening hyperbola can be represented parametrically by

or, rationally

A north-south opening hyperbola can be represented parametrically as

or, rationally

In all these formulae (h , k) are the center coordinates of the hyperbola, a is the length of the semi-major axis, and b is the length of the semi-minor axis. Note that in the rational forms of these formulae, the points (?a , 0) and (0 , ?a), respectively, are not represented by a real value of t, but are the limit of x and y as t tends to infinity.

Hypotrochoid

[edit]

A hypotrochoid is a curve traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is at a distance d from the center of the interior circle.

The parametric equations for the hypotrochoids are:

Some examples:

Parametric space curves

[edit]
Animated Parametric helix

Helix

[edit]
Parametric helix

Parametric equations are convenient for describing curves in higher-dimensional spaces. For example:

describes a three-dimensional curve, the helix, with a radius of a and rising by 2πb units per turn. The equations are identical in the plane to those for a circle. Such expressions as the one above are commonly written as

where r is a three-dimensional vector.

Parametric surfaces

[edit]

A torus with major radius R and minor radius r may be defined parametrically as

where the two parameters t and u both vary between 0 and 2π.

As u varies from 0 to 2π the point on the surface moves about a short circle passing through the hole in the torus. As t varies from 0 to 2π the point on the surface moves about a long circle around the hole in the torus.

Straight line

[edit]

The parametric equation of the line through the point and parallel to the vector is[7]

Applications

[edit]

Kinematics

[edit]

In kinematics, objects' paths through space are commonly described as parametric curves, with each spatial coordinate depending explicitly on an independent parameter (usually time). Used in this way, the set of parametric equations for the object's coordinates collectively constitute a vector-valued function for position. Such parametric curves can then be integrated and differentiated termwise. Thus, if a particle's position is described parametrically as

then its velocity can be found as

and its acceleration as

Computer-aided design

[edit]

Another important use of parametric equations is in the field of computer-aided design (CAD).[8] For example, consider the following three representations, all of which are commonly used to describe planar curves.

Type Form Example Description
Explicit Line
Implicit Circle
Parametric Line
Circle

Each representation has advantages and drawbacks for CAD applications.

The explicit representation may be very complicated, or even may not exist. Moreover, it does not behave well under geometric transformations, and in particular under rotations. On the other hand, as a parametric equation and an implicit equation may easily be deduced from an explicit representation, when a simple explicit representation exists, it has the advantages of both other representations.

Implicit representations may make it difficult to generate points on the curve, and even to decide whether there are real points. On the other hand, they are well suited for deciding whether a given point is on a curve, or whether it is inside or outside of a closed curve.

Such decisions may be difficult with a parametric representation, but parametric representations are best suited for generating points on a curve, and for plotting it.[9]

Integer geometry

[edit]

Numerous problems in integer geometry can be solved using parametric equations. A classical such solution is Euclid's parametrization of right triangles such that the lengths of their sides a, b and their hypotenuse c are coprime integers. As a and b are not both even (otherwise a, b and c would not be coprime), one may exchange them to have a even, and the parameterization is then

where the parameters m and n are positive coprime integers that are not both odd.

By multiplying a, b and c by an arbitrary positive integer, one gets a parametrization of all right triangles whose three sides have integer lengths.

Underdetermined linear systems

[edit]

A system of m linear equations in n unknowns is underdetermined if it has more than one solution. This occurs when the matrix of the system and its augmented matrix have the same rank r and r < n. In this case, one can select n ? r unknowns as parameters and represent all solutions as a parametric equation where all unknowns are expressed as linear combinations of the selected ones. That is, if the unknowns are one can reorder them for expressing the solutions as[10]

Such a parametric equation is called a parametric form of the solution of the system.[10]

The standard method for computing a parametric form of the solution is to use Gaussian elimination for computing a reduced row echelon form of the augmented matrix. Then the unknowns that can be used as parameters are the ones that correspond to columns not containing any leading entry (that is the left most non zero entry in a row or the matrix), and the parametric form can be straightforwardly deduced.[10]

See also

[edit]

Notes

[edit]
  1. ^ a b c Weisstein, Eric W. "Parametric Equations". MathWorld.
  2. ^ Kreyszig, Erwin (1972). Advanced Engineering Mathematics (3rd ed.). New York: Wiley. pp. 291, 342. ISBN 0-471-50728-8.
  3. ^ Burden, Richard L.; Faires, J. Douglas (1993). Numerical Analysis (5th ed.). Boston: Brookes/Cole. p. 149. ISBN 0-534-93219-3.
  4. ^ Thomas, George B.; Finney, Ross L. (1979). Calculus and Analytic Geometry (fifth ed.). Addison-Wesley. p. 91.
  5. ^ Nykamp, Duane. "Plane parametrization example". mathinsight.org. Retrieved 2025-08-07.
  6. ^ Spitzbart, Abraham (1975). Calculus with Analytic Geometry. Gleview, IL: Scott, Foresman and Company. ISBN 0-673-07907-4. Retrieved August 30, 2015.
  7. ^ Calculus: Single and Multivariable. John Wiley. 2025-08-07. p. 919. ISBN 9780470888612. OCLC 828768012.
  8. ^ Stewart, James (2003). Calculus (5th ed.). Belmont, CA: Thomson Learning, Inc. pp. 687–689. ISBN 0-534-39339-X.
  9. ^ Shah, Jami J.; Martti Mantyla (1995). Parametric and feature-based CAD/CAM: concepts, techniques, and applications. New York, NY: John Wiley & Sons, Inc. pp. 29–31. ISBN 0-471-00214-3.
  10. ^ a b c Anton, Howard; Rorres, Chris (2014) [1973]. "1.2 Gaussian Elimination". Elementary Linear Algebra (11th ed.). Wiley. pp. 11–24.
[edit]
sama是什么药 肺气肿有什么症状 声嘶力竭是什么意思 可见一斑是什么意思 92年的猴是什么命
面碱是什么 喘不上气挂什么科 山炮是什么意思 肝囊肿是什么原因引起的 房颤吃什么药最好
羊水偏多是什么原因 香蕉不能和什么水果一起吃 东施效颦是什么意思 病毒四项检查都有什么 梦见鞭炮是什么意思
03年属什么的 非萎缩性胃炎什么意思 58年属什么今年多大 利玛窦什么时候来中国 忠于自己是什么意思
脑血栓适合吃什么水果hcv8jop1ns9r.cn 傻子是什么意思hcv8jop7ns9r.cn 比卡丘什么意思hcv9jop5ns7r.cn 总流口水是什么原因hcv9jop3ns9r.cn 咏柳中的咏是什么意思kuyehao.com
囊腺瘤是什么hcv8jop4ns0r.cn 经常尿路感染是什么原因dayuxmw.com 激素6项什么时候查hcv9jop5ns2r.cn 26岁属什么的生肖hcv9jop4ns2r.cn 青瓜和黄瓜有什么区别bfb118.com
费率是什么hcv8jop0ns5r.cn 水瓜壳煲水有什么功效hcv9jop6ns3r.cn 窝里横是什么意思hcv7jop6ns3r.cn 水瓶座男生喜欢什么样的女生hcv7jop6ns0r.cn 梦见狼是什么预兆hcv9jop5ns2r.cn
特仑苏是什么意思sanhestory.com 梦见孕妇大肚子是什么意思hcv9jop3ns5r.cn 肛裂涂什么药膏能愈合tiangongnft.com 喉咙发炎吃什么食物hcv8jop8ns5r.cn 口腔异味吃什么药hcv9jop3ns0r.cn
百度