欣字取名什么寓意| 子午流注是什么意思| 芒果是什么意思| mlf操作是什么意思| 孩子吐了吃什么药| 羊排和什么一起炖好吃| 胳膊疼是什么病的前兆| 铁皮石斛有什么作用| 尽兴而归什么意思| 乌鸡白凤丸男性吃治疗什么| 丈二和尚摸不着头脑是什么意思| 农历10月份是什么星座| 促甲状腺激素偏高是什么意思| 什么人生病从来不看医生| 农历8月15是什么节日| 复合维生素b片主治什么病| 调理月经吃什么药最好| 右侧肋骨下方是什么器官| 镭射有什么危害| 金钱草有什么功效| 验尿白细胞高是什么原因| 11月25是什么星座| 胎膜是什么| 睡久了头疼是什么原因| 什么是甲母痣| 吃什么对胃好养胃的食物| 掉头发去医院挂什么科| 麦冬是什么| 婊子代表什么生肖| 违反禁令标志指示什么意思| 塞翁失马是什么生肖| 二月一日是什么星座| 胃痉挛吃什么药最有效| 岚字五行属什么| 豁口是什么意思| 噤口痢是什么意思| 刚怀孕有什么症状| 香精是什么东西| 什么云见日| 锁骨下面的骨头叫什么| 手指肿胀是什么原因| 手心长痣代表什么| 黄体不足吃什么| 宝宝蛋白质过敏喝什么奶粉| giordano是什么牌子| 起眼屎是什么原因| 老年人腿浮肿是什么原因引起的| 口苦吃什么药最好| 什么的水珠| mini是什么车| 用盐洗脸有什么好处| 为什么屎是黑色的| 羊悬筋是什么样子图片| 2006年出生的是什么命| 代谢是什么意思| 宫颈分离是什么意思| 扔枕头有什么忌讳吗| 如愿以偿是什么意思| 69是什么姿势| 子不孝父之过下一句是什么| 提拉米苏是什么东西| 吃什么东西可以养胃| 刮腻子是什么意思| 米肉是什么| 云南白药里面的保险子有什么用| 穆斯林是什么| 夸父为什么要追赶太阳| 什么叫情劫| 卡路里是什么意思| 手臂粗是什么原因| 难过美人关是什么生肖| 什么球会自己长大| 胡饼是什么| 总恶心是什么原因| 医学上ca是什么意思| 保肝护肝吃什么药好| 梦见捡钱了是什么预兆| 今年什么时候起伏| 探店是什么意思| 代入感是什么意思| 苔藓是什么意思| 桂枝茯苓丸治什么病| 白细胞低吃什么好| 大包子什么馅好吃| 减肥头晕是什么原因| 回民为什么不能吃猪肉| 亨廷顿舞蹈症是什么病| 心脏早搏什么症状| 做糖耐是检查什么| 发烧喝什么水| 出家当和尚有什么要求| 呀啦嗦是什么意思| 阿司匹林和阿莫西林有什么区别| 伤官见官是什么意思| 水土不服吃什么药管用| 母亲是o型血孩子是什么血型| 美国为什么叫鹰酱| 周知是什么意思| 玩票是什么意思| 为什么会嗜睡| 活好的女人有什么表现| 肠胃不好挂什么科| 吃什么东西去湿气| 皮肤长斑是什么原因引起的| 胆固醇高不能吃什么| 胆固醇偏高是什么原因| 广州有什么好吃的| 前壁后壁有什么区别| 寂寞的反义词是什么| 夏天用什么带饭不馊| 绿头牌是什么意思| 梦见前婆婆是什么意思| lane是什么意思| 六月十六是什么星座| 血压高看什么科| 面瘫是什么引起的| 周天是什么意思| 肤如凝脂是什么意思| 操刀是什么意思| 准生证需要什么材料| 脚踝肿是什么病| 冠心病喝什么茶最好| 男人壮阳吃什么最快| 什么是伤官配印| 痛风应该挂什么科| 史记是什么体史书| 急性肠胃炎吃什么水果| 文科女生学什么专业好| 黄晓明的老婆叫什么名字| 颈椎病是什么原因引起的| 奶泡是什么| 兔子不吃窝边草是什么意思| 504是什么错误| 频繁什么意思| 绿豆长什么样| 头昏脑胀是什么原因| 玉米淀粉可以用什么代替| 矢什么意思| 吃芒果有什么好处和坏处| 桃符指的是什么| 第二性征是什么意思| 脾是起什么作用的| 手机飞行模式是什么意思| 梦见在河里抓鱼是什么征兆| 秋千为什么叫秋千| 拔完智齿能吃什么| 拔牙后吃什么| 八哥是什么鸟| 起水痘需要注意什么| 缘起是什么意思| 翊是什么意思| hmo是什么| 抗宫炎片主要治什么| 什么是hpv感染| 什么药膏能让疣体脱落| 什么人不能吃芒果| 异禀是什么意思| 男士175是什么码| 什么是处方药| 胃出血吃什么药好| 每天坚持跑步有什么好处| 48年属什么| 73年属什么生肖| 小孩老是肚子疼是什么原因| 鲁蛇是什么意思| 一般的意思是什么| 膝盖肿是什么原因| 左小腹疼是什么原因| 眼睛老是流眼泪是什么原因| 嘴咸是什么原因| 悲催是什么意思| 甲状腺肿是什么意思| 黑脸代表什么| 介入医学科是什么科室| 富士康是干什么的| 平均血小板体积偏高是什么原因| 齿痕舌吃什么中成药| 乙肝五项第二项阳性是什么意思| 热气是什么意思| 海的尽头是什么| 脑白质脱髓鞘是什么意思| 黄豆可以和什么一起打豆浆| 寂寞什么意思| 肺肿瘤有什么症状| 吃什么食物对胰腺好| 禁忌症是什么意思| 专注力是什么意思| 拍胸片能检查出什么| 长期熬夜吃什么可以补回来| 艾草有什么功效| 11月14号是什么星座| 足跟疼痛用什么药| 牙缝越来越大是什么原因| 猪肉馅饺子配什么菜| ariel是什么意思| 充气娃娃是什么| 自由基是什么意思| 更年期什么时候开始| 胃饱胀是什么原因| 智能眼镜有什么功能| 1949属什么生肖| 什么的红烧肉| 扎马步有什么好处| 牛蒡是什么| 狐臭是什么人种的后代| 手指头发麻是什么原因| 排斥一个人什么意思| 寒潮是什么| 为什么会长口腔溃疡| skap是什么牌子| 臀疗是什么| 4.22是什么日子| 祈福什么意思| 吃木瓜有什么作用| 膀胱是什么| 女人吃藕有什么好处| 11月25日是什么星座| 献血前要注意什么| 三十三天都是什么天| 农历八月初一是什么星座| 娃娃脸适合什么发型| 手红是什么原因| 1108是什么星座| 天空为什么会下雨| 海螺不能和什么一起吃| idc是什么意思| 一花一草一世界的下一句是什么| 膝盖内侧疼是什么原因| 肌瘤和囊肿有什么区别| 女生送男生什么礼物好| 相濡以沫什么意思| 心率早搏是什么意思| 颇丰是什么意思| 吃什么睡眠好的最快最有效| 1966年属马的是什么命| 鞭炮笋学名叫什么| 卫冕冠军是什么意思| 阴茎长什么样| 于谦为什么加入国民党| 去医院验血挂什么科| 爱马仕配货是什么意思| 月经不来又没怀孕是什么原因| 就读是什么意思| 梦见花蛇是什么预兆| 狗下崽前有什么征兆| 大力是什么药| 白粉病用什么药| 梦见鱼是什么预兆| 乙肝二四五阳性什么意思| 五月十八什么星座| 潘金莲属什么生肖| 天麻泡水喝有什么功效| 杀青什么意思| 大姨妈量少是什么原因| 三点水加累读什么| 催乳素是什么意思| 什么是熵| 多喝水有什么好处坏处| 尿结石不能吃什么| 灵芝对身体有什么好处| 什么叫小微企业| 心是什么意思| 盐的主要成分是什么| 行了是什么意思| 百度Jump to content

贵阳首批社区公益事业项目获批 49个社区将换新颜

From Wikipedia, the free encyclopedia
(Redirected from Pattern classification)
百度 归结起来,出现退换货难的根本原因之一是该类平台用户格式条款设置霸王条款,据中国电子商务研究中心审查结果显示,趣分期、分期乐、爱学贷、优分期均存在对所售商品信息准确的免责条款。

When classification is performed by a computer, statistical methods are normally used to develop the algorithm.

Often, the individual observations are analyzed into a set of quantifiable properties, known variously as explanatory variables or features. These properties may variously be categorical (e.g. "A", "B", "AB" or "O", for blood type), ordinal (e.g. "large", "medium" or "small"), integer-valued (e.g. the number of occurrences of a particular word in an email) or real-valued (e.g. a measurement of blood pressure). Other classifiers work by comparing observations to previous observations by means of a similarity or distance function.

An algorithm that implements classification, especially in a concrete implementation, is known as a classifier. The term "classifier" sometimes also refers to the mathematical function, implemented by a classification algorithm, that maps input data to a category.

Terminology across fields is quite varied. In statistics, where classification is often done with logistic regression or a similar procedure, the properties of observations are termed explanatory variables (or independent variables, regressors, etc.), and the categories to be predicted are known as outcomes, which are considered to be possible values of the dependent variable. In machine learning, the observations are often known as instances, the explanatory variables are termed features (grouped into a feature vector), and the possible categories to be predicted are classes. Other fields may use different terminology: e.g. in community ecology, the term "classification" normally refers to cluster analysis.

Relation to other problems

[edit]

Classification and clustering are examples of the more general problem of pattern recognition, which is the assignment of some sort of output value to a given input value. Other examples are regression, which assigns a real-valued output to each input; sequence labeling, which assigns a class to each member of a sequence of values (for example, part of speech tagging, which assigns a part of speech to each word in an input sentence); parsing, which assigns a parse tree to an input sentence, describing the syntactic structure of the sentence; etc.

A common subclass of classification is probabilistic classification. Algorithms of this nature use statistical inference to find the best class for a given instance. Unlike other algorithms, which simply output a "best" class, probabilistic algorithms output a probability of the instance being a member of each of the possible classes. The best class is normally then selected as the one with the highest probability. However, such an algorithm has numerous advantages over non-probabilistic classifiers:

  • It can output a confidence value associated with its choice (in general, a classifier that can do this is known as a confidence-weighted classifier).
  • Correspondingly, it can abstain when its confidence of choosing any particular output is too low.
  • Because of the probabilities which are generated, probabilistic classifiers can be more effectively incorporated into larger machine-learning tasks, in a way that partially or completely avoids the problem of error propagation.

Frequentist procedures

[edit]

Early work on statistical classification was undertaken by Fisher,[1][2] in the context of two-group problems, leading to Fisher's linear discriminant function as the rule for assigning a group to a new observation.[3] This early work assumed that data-values within each of the two groups had a multivariate normal distribution. The extension of this same context to more than two groups has also been considered with a restriction imposed that the classification rule should be linear.[3][4] Later work for the multivariate normal distribution allowed the classifier to be nonlinear:[5] several classification rules can be derived based on different adjustments of the Mahalanobis distance, with a new observation being assigned to the group whose centre has the lowest adjusted distance from the observation.

Bayesian procedures

[edit]

Unlike frequentist procedures, Bayesian classification procedures provide a natural way of taking into account any available information about the relative sizes of the different groups within the overall population.[6] Bayesian procedures tend to be computationally expensive and, in the days before Markov chain Monte Carlo computations were developed, approximations for Bayesian clustering rules were devised.[7]

Some Bayesian procedures involve the calculation of group-membership probabilities: these provide a more informative outcome than a simple attribution of a single group-label to each new observation.

Binary and multiclass classification

[edit]

Classification can be thought of as two separate problems – binary classification and multiclass classification. In binary classification, a better understood task, only two classes are involved, whereas multiclass classification involves assigning an object to one of several classes.[8] Since many classification methods have been developed specifically for binary classification, multiclass classification often requires the combined use of multiple binary classifiers.

Feature vectors

[edit]

Most algorithms describe an individual instance whose category is to be predicted using a feature vector of individual, measurable properties of the instance. Each property is termed a feature, also known in statistics as an explanatory variable (or independent variable, although features may or may not be statistically independent). Features may variously be binary (e.g. "on" or "off"); categorical (e.g. "A", "B", "AB" or "O", for blood type); ordinal (e.g. "large", "medium" or "small"); integer-valued (e.g. the number of occurrences of a particular word in an email); or real-valued (e.g. a measurement of blood pressure). If the instance is an image, the feature values might correspond to the pixels of an image; if the instance is a piece of text, the feature values might be occurrence frequencies of different words. Some algorithms work only in terms of discrete data and require that real-valued or integer-valued data be discretized into groups (e.g. less than 5, between 5 and 10, or greater than 10).

Linear classifiers

[edit]

A large number of algorithms for classification can be phrased in terms of a linear function that assigns a score to each possible category k by combining the feature vector of an instance with a vector of weights, using a dot product. The predicted category is the one with the highest score. This type of score function is known as a linear predictor function and has the following general form: where Xi is the feature vector for instance i, βk is the vector of weights corresponding to category k, and score(Xi, k) is the score associated with assigning instance i to category k. In discrete choice theory, where instances represent people and categories represent choices, the score is considered the utility associated with person i choosing category k.

Algorithms with this basic setup are known as linear classifiers. What distinguishes them is the procedure for determining (training) the optimal weights/coefficients and the way that the score is interpreted.

Examples of such algorithms include

Algorithms

[edit]

Since no single form of classification is appropriate for all data sets, a large toolkit of classification algorithms has been developed. The most commonly used include:[9]

Choices between different possible algorithms are frequently made on the basis of quantitative evaluation of accuracy.

Application domains

[edit]

Classification has many applications. In some of these, it is employed as a data mining procedure, while in others more detailed statistical modeling is undertaken.

See also

[edit]

References

[edit]
  1. ^ Fisher, R. A. (1936). "The Use of Multiple Measurements in Taxonomic Problems". Annals of Eugenics. 7 (2): 179–188. doi:10.1111/j.1469-1809.1936.tb02137.x. hdl:2440/15227.
  2. ^ Fisher, R. A. (1938). "The Statistical Utilization of Multiple Measurements". Annals of Eugenics. 8 (4): 376–386. doi:10.1111/j.1469-1809.1938.tb02189.x. hdl:2440/15232.
  3. ^ a b Gnanadesikan, R. (1977) Methods for Statistical Data Analysis of Multivariate Observations, Wiley. ISBN 0-471-30845-5 (p. 83–86)
  4. ^ Rao, C.R. (1952) Advanced Statistical Methods in Multivariate Analysis, Wiley. (Section 9c)
  5. ^ Anderson, T.W. (1958) An Introduction to Multivariate Statistical Analysis, Wiley.
  6. ^ Binder, D. A. (1978). "Bayesian cluster analysis". Biometrika. 65: 31–38. doi:10.1093/biomet/65.1.31.
  7. ^ Binder, David A. (1981). "Approximations to Bayesian clustering rules". Biometrika. 68: 275–285. doi:10.1093/biomet/68.1.275.
  8. ^ Har-Peled, S., Roth, D., Zimak, D. (2003) "Constraint Classification for Multiclass Classification and Ranking." In: Becker, B., Thrun, S., Obermayer, K. (Eds) Advances in Neural Information Processing Systems 15: Proceedings of the 2002 Conference, MIT Press. ISBN 0-262-02550-7
  9. ^ "A Tour of The Top 10 Algorithms for Machine Learning Newbies". Built In. 2025-08-06. Retrieved 2025-08-06.
喝什么可以减肥瘦肚子 蚯蚓用什么呼吸 甲状腺肿大是什么原因引起 舌头挂什么科 骨折吃什么药恢复快
维c不能和什么一起吃 hospital是什么意思 请结合临床是什么意思 办出国护照需要什么手续 小水母吃什么
翻墙是什么意思 砼为什么念hun 外阴痒用什么 黄鼠狼进屋是什么兆头 彩铅是什么
55年出生属什么 槟榔吃多了有什么危害 腿胖是什么原因引起的 人丹是什么药 睡觉流口水什么原因
什么叫做凤凰男hcv8jop5ns4r.cn 孟姜女属什么生肖onlinewuye.com 酒店五行属什么hcv8jop8ns9r.cn evol是什么意思hcv8jop1ns5r.cn 小孩肠胃感冒吃什么药比较好hcv9jop4ns4r.cn
农历7月是什么星座jasonfriends.com 王羲之的儿子叫什么名字hcv8jop9ns8r.cn 反酸是什么症状hcv8jop5ns4r.cn 什么月hcv8jop2ns9r.cn q10什么时候吃最好hcv9jop2ns7r.cn
锁精环是什么hcv7jop5ns6r.cn 梦见大蟒蛇是什么预兆hcv9jop8ns0r.cn dr检查是什么意思hcv7jop6ns3r.cn 润色是什么意思hcv9jop6ns4r.cn 什么终于什么造句hcv8jop1ns1r.cn
排骨炖什么比较好吃hcv9jop2ns3r.cn 梦见捡到钱是什么意思hcv8jop7ns2r.cn 10月28号是什么星座zhongyiyatai.com 曹植是什么生肖hcv7jop6ns1r.cn 相手蟹吃什么liaochangning.com
百度