1月18是什么星座| 银耳是什么| 军字五行属什么| 月建是什么意思| 6度醋与9度有什么区别| 恨天高是什么意思| 囹圄是什么意思| 黑热病是什么病| 头晕需要做什么检查| 平胸是什么原因导致的怎样解决| 岁月如歌下一句是什么| 什么是混合痔| 流鼻血是什么引起的| 胃酸过多吃什么药| 梦见自己把头发剪短了是什么意思| 受之无愧的意思是什么| 女生爱出汗是什么原因| 炙热是什么意思| 甲状腺饱满是什么意思| 4朵玫瑰代表什么意思| 快速补血吃什么| 3.9是什么星座| 裸贷是什么意思| 孔子名叫什么| 三氯蔗糖是什么| 指甲月牙代表什么| 西湖醋鱼用什么鱼| 虾腹部的黑线是什么| 马桶什么牌子好| 什么书比较好| 灰色配什么色好看| 肾绞痛可能由于什么原因引起| 男人前列腺炎有什么症状表现| 暗戳戳是什么意思| 什么减肥有效| 97年属什么的生肖| 血红蛋白低说明什么| 土命和什么命最配| 胆囊炎吃什么蔬菜好| 什么叫亚健康| 左肾尿盐结晶是什么意思| 什么是跨域| 米非司酮片是什么药| 柠檬是什么季节的水果| 夏天什么颜色最防晒| 工具人什么意思| 1215是什么星座| 炸薯条用什么淀粉| 治疗结石最好的方法是什么| 胸前出汗多是什么原因| 城隍庙是什么神| 熬夜吃什么保健品| 九月份是什么星座| 亥时是什么时候| 乙肝复查检查什么项目| 安宫丸什么时候吃| 雪村和赵英俊什么关系| sp02是什么意思| 童五行属什么| 胃难受想吐是什么原因| 喝绿茶有什么好处| 小酌怡情什么意思| 主任医师是什么职称| 姑姑和我是什么关系| 癣用什么药| 高兴的什么| 肝肾衰竭有什么症状| 不敢苟同是什么意思| 什么是手足口病| 肺火旺吃什么药| 六一年属什么生肖| 开瑞坦是什么药| 2005属什么生肖| 凝字五行属什么| 小孩c反应蛋白高说明什么| 治字五行属什么| 嘴唇肿起来一般是什么原因引起的| hpv检查前需要注意什么| 金桔什么时候开花结果| 人为什么会有头皮屑| 大腿外侧麻木是什么原因| 快照是什么意思| buffalo是什么牌子| 潴是什么意思| 青瓜和黄瓜有什么区别| ph阳性是什么意思| 酸角是什么| 古井贡酒是什么香型| 包皮龟头炎用什么药膏| 经常流鼻血是什么情况| 血常规检查什么| 什么的镜子| 站着头晕是什么原因| 腿上血栓是什么症状| 荷花的花语是什么| 发条是什么意思| 电镀是做什么的| 牙膏属于什么类商品| 女人乳房疼是什么原因| 慢阻肺吃什么药| 验孕棒阳性代表什么| 疼痛科主要看什么病| 老年脑是什么病| 1994年属狗的是什么命| 怼人是什么意思| 指压板有什么功效| 肛门周围痒是什么病| 困觉是什么意思| 什么最解渴| 柴胡有什么功效| THENORTHFACE什么牌子| 前方高能是什么意思| 6月26号是什么星座| 军长相当于地方什么官| 秦始皇是芈月的什么人| 日本投降是什么时候| 肾囊肿有什么症状| 北京市长属于什么级别| 反复发烧是什么原因| 水果什么时间段吃最好| 右手掌心有痣代表什么| 大腿前侧是什么经络| 家里养什么鱼好| 1月6号什么星座| 硬膜囊前缘受压是什么意思| 安全生产职责是什么| 黄油可以做什么美食| 来来来喝完这杯还有三杯是什么歌| 巧克力囊肿是什么| 手足口病疫苗什么时候打| 脂肪是什么组织| 胃酸过多吃什么食物好| 胳膊麻是什么原因| nfl是什么意思| 外痔疼痛用什么药最好| 嘴唇紫色是什么原因| 悬钟为什么叫绝骨| 双手抽筋是什么原因| 生活质量是什么意思| 双飞什么意思| 什么人容易得间质瘤| 性格好是什么意思| 甲状腺功能减退是什么意思| 我适合什么发型| 他不懂你的心假装冷静是什么歌| 嗓子疼喝什么药| 开平方是什么意思| 血脂稠喝什么茶效果好| 7月1日什么星座| 惊厥是什么原因引起的| 吹牛皮是什么意思| 什么是事实婚姻| 妯娌是什么意思| 异常心电图是什么意思| 检查有没有怀孕挂什么科| 普瑞巴林胶囊治什么病| 备孕需要注意些什么| 金屋藏娇是什么意思| 哽咽是什么意思| 什么药治胃炎效果好| 肚脐眼周围疼吃什么药| 月经量少吃什么调理| 料理机是干什么用的| 什么的香味| 鼻涕是绿色的是什么原因| 装什么病能容易开病假| 内裤发黄是什么原因呢| 在此是什么意思| 头发厚适合剪什么发型| ar是什么意思| ecmo是什么| 尖嘴鱼叫什么鱼| 1977年是什么命| 木加号读什么| 地贫是什么意思| 梦见衣服是什么意思| 牛皮糖是什么意思| 排卵期一般在什么时候| 口腔溃疡缺什么| 头经常晕是什么原因| 一般什么人会有美人尖| hpv弱阳性是什么意思| 属羊的是什么星座| 三只手是什么意思| 喜欢一个人是什么感觉| 金木水火土代表什么| 不容乐观是什么意思| 吃什么药死的快| 乘务长是干什么的| 喝中药不能吃什么| 亚专业是什么意思| 什么面朝天| 高校新生是什么意思| 男人好难做人好难是什么歌| 低烧可以吃什么药| 耳朵后面疼是什么原因| 米肠是什么做的| 俞是什么意思| 什么是奢侈品| 结膜炎用什么眼药水效果好| 重庆古代叫什么| 狮子座什么星象| 疔是什么意思| 尿路感染有什么症状| 女性备孕吃什么养卵泡| 什么是央企| 乌灵胶囊有什么副作用| 钱学森发明了什么| 宫颈糜烂有什么症状| 老实的动物是什么生肖| 南极和北极有什么区别| 公安局是干什么的| 活泼开朗是什么意思| cab是什么意思| 小麦粉可以做什么吃的| 猎户座是什么星座| 哺乳期吃什么食物好| 喉咙干咳嗽是什么原因| 大姨妈来了吃什么好| 春天是什么颜色的| 正常人为什么会得梅毒| 金球奖什么时候颁发| 纳财适合做什么| 出挑是什么意思| 化疗前吃什么补充营养| 甲沟炎挂什么科| 俗气是什么意思| 胎停是什么原因引起的| 起眼屎是什么原因| 艾灸起水泡是什么原因| 马子是什么意思| 山竹什么味道| 低头头晕是什么原因| 私募是做什么的| 孕妇为什么那么怕热| 泡沫尿吃什么药| hisense什么牌子| 为什么没有广东大学| 小孩表演后卸妆用什么| hib疫苗是什么意思| 下午五点半是什么时辰| 什么情况会胎停| 胃不好的人适合吃什么水果| 嘴唇挂什么科| 福星贵人是什么意思| 双氢克尿噻又叫什么| 细菌性阴道炎用什么洗液| 一对什么| 血脂高有什么症状| 回声欠均匀是什么意思| 兴奋是什么意思| 新生儿什么时候吃ad| 毛囊炎是什么样子| 处女男和什么星座最配| 醋泡洋葱有什么功效| 钢铁侠叫什么名字| 阿托伐他汀钙片治什么病| 牙龈萎缩吃什么药见效快| 西装裤配什么上衣| 老化是什么意思| 太抽象了是什么意思| 吃什么对大脑记忆力好| 瓦是什么的单位| 牙疼吃什么水果好| 百度Jump to content

今天有小阵雨造访 太阳又玩躲猫猫 下周二才会登场

From Wikipedia, the free encyclopedia
(Redirected from Table (computing))
百度 安装在车辆进气管道底部的排水阀可能被灰尘、树叶或其他异物堵塞。

In computer science, a lookup table (LUT) is an array that replaces runtime computation of a mathematical function with a simpler array indexing operation, in a process termed as direct addressing. The savings in processing time can be significant, because retrieving a value from memory is often faster than carrying out an "expensive" computation or input/output operation.[1] The tables may be precalculated and stored in static program storage, calculated (or "pre-fetched") as part of a program's initialization phase (memoization), or even stored in hardware in application-specific platforms. Lookup tables are also used extensively to validate input values by matching against a list of valid (or invalid) items in an array and, in some programming languages, may include pointer functions (or offsets to labels) to process the matching input. FPGAs also make extensive use of reconfigurable, hardware-implemented, lookup tables to provide programmable hardware functionality. LUTs differ from hash tables in a way that, to retrieve a value with key , a hash table would store the value in the slot where is a hash function i.e. is used to compute the slot, while in the case of LUT, the value is stored in slot , thus directly addressable.[2]:?466?

History

[edit]
Part of a 20th-century table of common logarithms in the reference book Abramowitz and Stegun.

Before the advent of computers, lookup tables of values were used to speed up hand calculations of complex functions, such as in trigonometry, logarithms, and statistical density functions.[3]

In ancient (499 AD) India, Aryabhata created one of the first sine tables, which he encoded in a Sanskrit-letter-based number system. In 493 AD, Victorius of Aquitaine wrote a 98-column multiplication table which gave (in Roman numerals) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144"[4] Modern school children are often taught to memorize "times tables" to avoid calculations of the most commonly used numbers (up to 9 x 9 or 12 x 12).

Early in the history of computers, input/output operations were particularly slow – even in comparison to processor speeds of the time. It made sense to reduce expensive read operations by a form of manual caching by creating either static lookup tables (embedded in the program) or dynamic prefetched arrays to contain only the most commonly occurring data items. Despite the introduction of systemwide caching that now automates this process, application level lookup tables can still improve performance for data items that rarely, if ever, change.

Lookup tables were one of the earliest functionalities implemented in computer spreadsheets, with the initial version of VisiCalc (1979) including a LOOKUP function among its original 20 functions.[5] This has been followed by subsequent spreadsheets, such as Microsoft Excel, and complemented by specialized VLOOKUP and HLOOKUP functions to simplify lookup in a vertical or horizontal table. In Microsoft Excel the XLOOKUP function has been rolled out starting 28 August 2019.

Limitations

[edit]

Although the performance of a LUT is a guaranteed for a lookup operation, no two entities or values can have the same key . When the size of universe —where the keys are drawn—is large, it might be impractical or impossible to be stored in memory. Hence, in this case, a hash table would be a preferable alternative.[2]:?468?

Examples

[edit]

Trivial hash function

[edit]

For a trivial hash function lookup, the unsigned raw data value is used directly as an index to a one-dimensional table to extract a result. For small ranges, this can be amongst the fastest lookup, even exceeding binary search speed with zero branches and executing in constant time.[6]

Counting bits in a series of bytes

[edit]

One discrete problem that is expensive to solve on many computers is that of counting the number of bits that are set to 1 in a (binary) number, sometimes called the population function. For example, the decimal number "37" is "00100101" in binary, so it contains three bits that are set to binary "1".[7]:?282?

A simple example of C code, designed to count the 1 bits in a int, might look like this:[7]:?283?

int count_ones(unsigned int x) {
  int result = 0;
  while (x != 0) {
    x = x & (x - 1);
    result++;
  }
  return result;
}

The above implementation requires 32 operations for an evaluation of a 32-bit value, which can potentially take several clock cycles due to branching. It can be "unrolled" into a lookup table which in turn uses trivial hash function for better performance.[7]:?282-283?

The bits array, bits_set with 256 entries is constructed by giving the number of one bits set in each possible byte value (e.g. 0x00 = 0, 0x01 = 1, 0x02 = 1, and so on). Although a runtime algorithm can be used to generate the bits_set array, it's an inefficient usage of clock cycles when the size is taken into consideration, hence a precomputed table is used—although a compile time script could be used to dynamically generate and append the table to the source file. Sum of ones in each byte of the integer can be calculated through trivial hash function lookup on each byte; thus, effectively avoiding branches resulting in considerable improvement in performance.[7]:?284?

int count_ones(int input_value) {
  union four_bytes {
    int big_int;
    char each_byte[4];
  } operand = input_value;
  const int bits_set[256] = {
      0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4,
      2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
      2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4,
      2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
      2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
      4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
      2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5,
      3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
      2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
      4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
      4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};
  return (bits_set[operand.each_byte[0]] + bits_set[operand.each_byte[1]] +
          bits_set[operand.each_byte[2]] + bits_set[operand.each_byte[3]]);
}}

Lookup tables in image processing

[edit]
Red (A), Green (B), Blue (C) 16-bit lookup table file sample. (Lines 14 to 65524 not shown)

"Lookup tables (LUTs) are an excellent technique for optimizing the evaluation of functions that are expensive to compute and inexpensive to cache. ... For data requests that fall between the table's samples, an interpolation algorithm can generate reasonable approximations by averaging nearby samples."[8]

In data analysis applications, such as image processing, a lookup table (LUT) can be used to transform the input data into a more desirable output format. For example, a grayscale picture of the planet Saturn could be transformed into a color image to emphasize the differences in its rings.

In image processing, lookup tables are often called LUTs (or 3DLUT), and give an output value for each of a range of index values. One common LUT, called the colormap or palette, is used to determine the colors and intensity values with which a particular image will be displayed. In computed tomography, "windowing" refers to a related concept for determining how to display the intensity of measured radiation.

Discussion

[edit]

A classic example of reducing run-time computations using lookup tables is to obtain the result of a trigonometry calculation, such as the sine of a value.[9] Calculating trigonometric functions can substantially slow a computing application. The same application can finish much sooner when it first precalculates the sine of a number of values, for example for each whole number of degrees (The table can be defined as static variables at compile time, reducing repeated run time costs). When the program requires the sine of a value, it can use the lookup table to retrieve the closest sine value from a memory address, and may also interpolate to the sine of the desired value, instead of calculating by mathematical formula. Lookup tables can thus be used by mathematics coprocessors in computer systems. An error in a lookup table was responsible for Intel's infamous floating-point divide bug.

Functions of a single variable (such as sine and cosine) may be implemented by a simple array. Functions involving two or more variables require multidimensional array indexing techniques. The latter case may thus employ a two-dimensional array of power[x][y] to replace a function to calculate xy for a limited range of x and y values. Functions that have more than one result may be implemented with lookup tables that are arrays of structures.

As mentioned, there are intermediate solutions that use tables in combination with a small amount of computation, often using interpolation. Pre-calculation combined with interpolation can produce higher accuracy for values that fall between two precomputed values. This technique requires slightly more time to be performed but can greatly enhance accuracy in applications that require it. Depending on the values being precomputed, precomputation with interpolation can also be used to shrink the lookup table size while maintaining accuracy.

While often effective, employing a lookup table may nevertheless result in a severe penalty if the computation that the LUT replaces is relatively simple. Memory retrieval time and the complexity of memory requirements can increase application operation time and system complexity relative to what would be required by straight formula computation. The possibility of polluting the cache may also become a problem. Table accesses for large tables will almost certainly cause a cache miss. This phenomenon is increasingly becoming an issue as processors outpace memory. A similar issue appears in rematerialization, a compiler optimization. In some environments, such as the Java programming language, table lookups can be even more expensive due to mandatory bounds-checking involving an additional comparison and branch for each lookup.

There are two fundamental limitations on when it is possible to construct a lookup table for a required operation. One is the amount of memory that is available: one cannot construct a lookup table larger than the space available for the table, although it is possible to construct disk-based lookup tables at the expense of lookup time. The other is the time required to compute the table values in the first instance; although this usually needs to be done only once, if it takes a prohibitively long time, it may make the use of a lookup table an inappropriate solution. As previously stated however, tables can be statically defined in many cases.

Computing sines

[edit]

Most computers only perform basic arithmetic operations and cannot directly calculate the sine of a given value. Instead, they use the CORDIC algorithm or a complex formula such as the following Taylor series to compute the value of sine to a high degree of precision:[10]:?5?

(for x close to 0)

However, this can be expensive to compute, especially on slow processors, and there are many applications, particularly in traditional computer graphics, that need to compute many thousands of sine values every second. A common solution is to initially compute the sine of many evenly distributed values, and then to find the sine of x we choose the sine of the value closest to x through array indexing operation. This will be close to the correct value because sine is a continuous function with a bounded rate of change.[10]:?6? For example:[11]:?545–548?

real array sine_table[-1000..1000]
for x from -1000 to 1000
    sine_table[x] = sine(pi * x / 1000)

function lookup_sine(x)
    return sine_table[round(1000 * x / pi)]
Linear interpolation on a portion of the sine function

Unfortunately, the table requires quite a bit of space: if IEEE double-precision floating-point numbers are used, over 16,000 bytes would be required. We can use fewer samples, but then our precision will significantly worsen. One good solution is linear interpolation, which draws a line between the two points in the table on either side of the value and locates the answer on that line. This is still quick to compute, and much more accurate for smooth functions such as the sine function. Here is an example using linear interpolation:

function lookup_sine(x)
    x1 = floor(x * 1000 / pi)
    y1 = sine_table[x1]
    y2 = sine_table[x1 + 1]
    return y1 + (y2 - y1) * (x * 1000 / pi - x1)

Linear interpolation provides for an interpolated function that is continuous, but will not, in general, have continuous derivatives. For smoother interpolation of table lookup that is continuous and has continuous first derivative, one should use the cubic Hermite spline.

When using interpolation, the size of the lookup table can be reduced by using nonuniform sampling, which means that where the function is close to straight, we use few sample points, while where it changes value quickly we use more sample points to keep the approximation close to the real curve. For more information, see interpolation.

Other usages of lookup tables

[edit]

Caches

[edit]

Storage caches (including disk caches for files, or processor caches for either code or data) work also like a lookup table. The table is built with very fast memory instead of being stored on slower external memory, and maintains two pieces of data for a sub-range of bits composing an external memory (or disk) address (notably the lowest bits of any possible external address):

  • one piece (the tag) contains the value of the remaining bits of the address; if these bits match with those from the memory address to read or write, then the other piece contains the cached value for this address.
  • the other piece maintains the data associated to that address.

A single (fast) lookup is performed to read the tag in the lookup table at the index specified by the lowest bits of the desired external storage address, and to determine if the memory address is hit by the cache. When a hit is found, no access to external memory is needed (except for write operations, where the cached value may need to be updated asynchronously to the slower memory after some time, or if the position in the cache must be replaced to cache another address).

Hardware LUTs

[edit]

In digital logic, a lookup table can be implemented with a multiplexer whose select lines are driven by the address signal and whose inputs are the values of the elements contained in the array. These values can either be hard-wired, as in an ASIC whose purpose is specific to a function, or provided by D latches which allow for configurable values. (ROM, EPROM, EEPROM, or RAM.)

An n-bit LUT can encode any n-input Boolean function by storing the truth table of the function in the LUT. This is an efficient way of encoding Boolean logic functions, and LUTs with 4-6 bits of input are in fact the key component of modern field-programmable gate arrays (FPGAs) which provide reconfigurable hardware logic capabilities.

Data acquisition and control systems

[edit]

In data acquisition and control systems, lookup tables are commonly used to undertake the following operations in:

  • The application of calibration data, so as to apply corrections to uncalibrated measurement or setpoint values; and
  • Undertaking measurement unit conversion; and
  • Performing generic user-defined computations.

In some systems, polynomials may also be defined in place of lookup tables for these calculations.

See also

[edit]

References

[edit]
  1. ^ McNamee, Paul (21 August 1998). "Automated Memoization in C++". Archived from the original on 16 April 2019.
  2. ^ a b Kwok, W.; Haghighi, K.; Kang, E. (1995). "An efficient data structure for the advancing-front triangular mesh generation technique". Communications in Numerical Methods in Engineering. 11 (5). Wiley & Sons: 465–473. doi:10.1002/cnm.1640110511.
  3. ^ Campbell-Kelly, Martin; Croarken, Mary; Robson, Eleanor, eds. (2003). The History of Mathematical Tables: From Sumer to Spreadsheets. Oxford University Press.
  4. ^ Maher, David. W. J. and John F. Makowski. "Literary Evidence for Roman Arithmetic With Fractions", 'Classical Philology' (2001) Vol. 96 No. 4 (2001) pp. 376–399. (See page p.383.)
  5. ^ Bill Jelen: "From 1979 – VisiCalc and LOOKUP"!, by MrExcel East, 31 March 2012
  6. ^ Cormen, Thomas H. (2009). Introduction to algorithms (3rd ed.). Cambridge, Mass.: MIT Press. pp. 253–255. ISBN 9780262033848. Retrieved 26 November 2015.
  7. ^ a b c d Jungck P.; Dencan R.; Mulcahy D. (2011). Developing for Performance. In: packetC Programming. Apress. doi:10.1007/978-1-4302-4159-1_26. ISBN 978-1-4302-4159-1.
  8. ^ nvidia gpu gems2 : using-lookup-tables-accelerate-color
  9. ^ Sasao, T.; Butler, J. T.; Riedel, M. D. "Application of LUT Cascades to Numerical Function Generators". Defence Technical Information Center. NAVAL POSTGRADUATE SCHOOL MONTEREY CA DEPT OF ELECTRICAL AND COMPUTER ENGINEERING. Retrieved 17 May 2024.{{cite web}}: CS1 maint: multiple names: authors list (link)
  10. ^ a b Sharif, Haidar (2014). "High-performance mathematical functions for single-core architectures". Journal of Circuits, Systems and Computers. 23 (4). World Scientific. doi:10.1142/S0218126614500510.
  11. ^ Randall Hyde (1 March 2010). The Art of Assembly Language, 2nd Edition (PDF). No Starch Press. ISBN 978-1593272074 – via University of Campinas Institute of Computing.
[edit]
绿豆和什么一起煮好 结梁子什么意思 山谷念什么 头孢过敏用什么药代替 小媳妇是什么意思
幽门杆菌是什么意思 北京晚上有什么好玩的景点 滑丝是什么意思 补肾壮阳吃什么好 吃什么对心脏好改善供血不足
散光是什么原因造成的 口腔苔藓用什么药 泰五行属什么 钳子什么牌子好 戒指什么品牌好
德高望重是什么生肖 开车撞死猫有什么预兆 五行属木缺什么 班禅是什么意思 梦见地震是什么意思
上午12点是什么时候hcv8jop8ns2r.cn 脾胃虚寒吃什么食物好hcv9jop6ns8r.cn o型血和b型血的孩子是什么血型hcv9jop5ns4r.cn 头七有什么规矩hcv8jop9ns5r.cn 胸闷什么原因hcv7jop9ns8r.cn
混不吝是什么意思hcv9jop4ns3r.cn 组cp是什么意思hcv7jop5ns0r.cn 惟妙惟肖是什么意思hcv9jop4ns4r.cn 特长有什么hcv8jop0ns3r.cn 贝尔发明了什么东西hcv9jop6ns4r.cn
吃什么健脾胃hcv8jop0ns9r.cn 优对什么hcv9jop1ns4r.cn 为什么禁止克隆人hcv8jop6ns8r.cn 宋江是什么星hcv8jop5ns7r.cn 神经衰弱吃什么dayuxmw.com
肺部高密度影是什么意思hcv7jop7ns4r.cn 霸王硬上弓是什么意思hcv7jop5ns1r.cn 月朔是什么意思hcv8jop9ns5r.cn lee是什么品牌hcv8jop5ns3r.cn 一天当中什么时候血压最高hcv7jop6ns7r.cn
百度