什么是重力| 心跳快是什么原因| 虾线是什么| 榴莲为什么那么臭| 吃饭的时候恶心想吐是什么原因| 黄疸挂什么科| 高梁长什么样子| 六月飞雪是什么意思| 抖腿有什么好处| 年轻人头晕是什么原因| 恨铁不成钢什么意思| 定日是什么意思| 健将是什么意思| 多吃蔬菜有什么好处| 腹黑什么意思| 三板斧是什么意思| 哮喘病应该注意什么| 美宝莲属于什么档次| 骨折移位有什么感觉| 慵懒是什么意思| 女人阴部黑是什么原因| 4.12是什么星座| 鸡蛋和什么食物相克| buy是什么意思| 5点至7点是什么时辰| 祥云是什么意思| 胎儿宫内窘迫是什么意思| 什么样的树| 判处死刑缓期二年执行是什么意思| 胎盘下缘达宫颈内口是什么意思| 溶血性黄疸是什么原因引起的| 关心则乱是什么意思| 胃痛吃什么药效果好| 72岁属什么| 干贝是什么东西做的| 什么鱼红烧好吃| 肺不好吃什么| 寅五行属什么| 百花齐放是什么生肖| 一凉就咳嗽是什么原因| 什么情况需要根管治疗| 脾大是什么原因造成的怎么治疗| 胃热是什么原因引起的| 急性肾炎什么症状| 尿道口流白色液体是什么病| 了什么意思| 左手抖动是什么原因| dream car是什么意思| 熤是什么意思| 生命线分叉代表什么| wtf是什么意思| 偷换概念是什么意思| 凋谢是什么意思| 转氨酶高挂什么科| 什么食物降胆固醇最好| 皮肤越抓越痒是什么原因| 头皮很痒是什么原因| 梦见女婴儿是什么意思| 肺炎是什么症状| 加号是什么意思| 脚麻是什么原因引起的| 膝盖痒是什么原因| 六月初九是什么星座| 血糖高吃什么降得快| 皮尔卡丹属于什么档次| 乐捐是什么意思| 肠道胀气是什么原因造成的| 脂肪肝是什么症状| 前列腺b超能检查出什么| 虎父无犬子是什么意思| 今天属什么生肖日历| hay什么意思| 天秤座什么象| 风的孩子叫什么| 1962属什么生肖| 身首异处是什么意思| 溃烂用什么药治愈最快| 放飞自我是什么意思| 虾和什么不能一起吃| 自主神经功能紊乱吃什么药| 煮粥用什么米| 孩子嗓子疼吃什么药| 大腿正面是什么经络| hbsag阴性是什么意思| 为什么要穿内裤| 树叶又什么又什么| 球麻痹是什么病| 十二指肠溃疡吃什么中成药| 感恩节为什么要吃火鸡| 貂是什么动物| 笨和蠢有什么区别| 为什么打喷嚏会漏尿| 贴膏药发热是什么原因| 什么的世界| 为什么鸡蛋不能和牛奶一起吃| 什么野菜| 锅烧是什么| 怡什么意思| 胃炎伴糜烂吃什么药效果好| 果腹是什么意思| 植物有什么| 手指发麻什么原因| 香薰是什么| 吃什么能变白| 脚趾骨折是什么感觉| 牙齿吃甜的就会疼什么原因| 18k是什么金| 虎是什么意思| 摩羯座是什么象| pcl是什么材料| 什么是假性自闭症| 做梦抓鱼什么意思周公解梦| 胎儿顶臀长是什么意思| 天疱疮是什么病| 女强人是什么意思| 突然间头晕是什么原因| 鱼饼是什么做的| 有点咳嗽吃什么药| 磨牙是缺什么| 肝血不足吃什么药| 小肚子疼挂什么科| 什么叫变应性鼻炎| 小孩办理护照需要什么材料| 田七与三七有什么区别| 什么泡水喝杀幽门螺杆菌| 馨是什么意思| 鸡毛信是什么意思| 狗贫血吃什么补血最快| 鱼腥草泡水喝有什么功效| 笋壳鱼是什么鱼| 秦始皇的名字叫什么| 腰背疼痛挂什么科| 夫字五行属什么| 血小板减少是什么原因| 氯气是什么颜色| 活死人是什么意思| 白牡丹是什么茶| 什么样的眼睛形容词| 桃花是什么季节开的| 鱼香肉丝是什么菜系| 女同叫什么| 忌诸事不宜什么意思| 阴道感染用什么药| 农历12月是什么月| 小指麻木是什么原因| 肛门痒擦什么药| 现在是吃什么水果的季节| 尿酸高多吃什么食物好| 龙骨为什么比排骨便宜| pickup是什么意思| 激光脱毛对人体有没有什么危害| 中心思想是什么意思| 喝啤酒吃什么菜最好| 用盐洗头发有什么好处| 泌尿系感染吃什么药| 自我救赎是什么意思| ve是什么意思| 属鼠的和什么属相不合| 炒菜什么时候放调料| 甲状腺是什么| 一点小事就暴躁的人是什么病| 凯撒是什么意思| 运气是什么意思| 什么的妈妈| 2是什么生肖| 生日礼物送什么| 临床医学学什么| 白马王子是什么意思| 腹痛拉肚子吃什么药| 九月十三是什么星座| 手机飞行模式是什么意思| 勃起不硬吃什么药| 仰卧起坐有什么好处| 肋骨骨折吃什么药| hpv高危是什么意思| 身体起水泡是什么病症| 什么是丹凤眼| 615是什么星座| 一拃是什么意思| 大海是什么颜色| 为什么会梦到前男友| 冲正是什么意思| 大运流年是什么意思| 眼角痒用什么眼药水| 巨蟹座与什么星座最配| 念珠菌感染用什么药效果好| 绿豆汤不能和什么一起吃| 前列腺炎有些什么症状| 正剧是什么意思| sat是什么考试| 凝胶是什么| 破执是什么意思| 牙齿痛用什么药| 什么生木| 乳房里面有硬块是什么原因| 黄芪什么人不能吃| naco3是什么| 手机合约版是什么意思| hw是什么牌子| ci是什么意思| 2.6号是什么星座| 梦见掉了两颗牙齿是什么意思| 冰岛茶属于什么茶| 什么症状吃柏子养心丸| 1988属什么生肖| 吃什么能立马催月经| 机警是什么意思| 插入阴道什么感觉| 最毒的蛇是什么蛇| 胆囊充盈欠佳什么意思| 末梢神经炎是什么症状| 外阴白斑瘙痒用什么药| 舌炎吃什么药| 助产学出来是干什么的| 青灰色是什么颜色| 红豆有什么功效| 娘子啊哈是什么歌| 半夜尿多是什么原因| 驱除鞑虏是什么意思| 唐玄宗叫什么| 口臭应该挂什么科| 妊娠囊是什么| 呼吸胸口疼是什么原因| nbp是什么意思| 什么是营养| 宫腔镜是什么意思| 肠胃湿热吃什么药好| 7月22日是什么星座| 烟酰胺有什么作用| 什么的太空| 不易是什么意思| 菜园里有什么菜| 女人漏尿是什么原因| 梅尼埃病是什么病| 西安属于什么省| 筑基是什么意思| 尿蛋白2加是什么意思| 不知道吃什么怎么办| 生产周期是什么意思| 暴躁是什么意思| 白细胞酯酶阳性什么意思| 做造影对身体有什么伤害| mixblu是什么牌子| 盖是什么意思| 腋下是什么经络| 头晕用什么药| 吃什么奶水多| 孩子咳嗽吃什么药效果好| 尿路感染不能吃什么东西| 田七煲汤配什么材料| 为什么长口腔溃疡| 月经来了痛经吃什么药| 胃食管反流病是什么原因造成的| 反式脂肪酸是什么意思| camus是什么酒| 唇炎看什么科室| 特别怕热爱出汗是什么原因| 西门子洗衣机不脱水是什么原因| 床头朝什么方向是正确的| 眼睛胀疼是什么原因| 太上老君的坐骑是什么| lot是什么| 心电图逆钟向转位什么意思| 颈椎病用什么枕头最好| 百度Jump to content

贵州玉屏:传承发展箫笛文化

From Wikipedia, the free encyclopedia
(Redirected from Wavelet compression)
百度 特别是冬至那天,从村庄到社区,各族干部群众一起包饺子、吃饺子,亲如一家、其乐融融,民族团结之花开遍天山南北。

An example of the 2D discrete wavelet transform that is used in JPEG2000

In mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform.[1][2][3][4]

Definition

[edit]

A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is, a complete orthonormal system for the Hilbert space of square-integrable functions on the real line.

The Hilbert basis is constructed as the family of functions by means of dyadic translations and dilations of , for integers .

If, under the standard inner product on , this family is orthonormal, then it is an orthonormal system: where is the Kronecker delta.

Completeness is satisfied if every function may be expanded in the basis as

with convergence of the series understood to be convergence in norm. Such a representation of is known as a wavelet series. This implies that an orthonormal wavelet is self-dual.

The integral wavelet transform is the integral transform defined as The wavelet coefficients are then given by

Here, is called the binary dilation or dyadic dilation, and is the binary or dyadic position.

Principle

[edit]

The fundamental idea of wavelet transforms is that the transformation should allow only changes in time extension, but not shape, imposing a restriction on choosing suitable basis functions. Changes in the time extension are expected to conform to the corresponding analysis frequency of the basis function. Based on the uncertainty principle of signal processing,

where represents time and angular frequency (, where is ordinary frequency).

The higher the required resolution in time, the lower the resolution in frequency has to be. The larger the extension of the analysis windows is chosen, the larger is the value of .

When is large

  1. Bad time resolution
  2. Good frequency resolution
  3. Low frequency, large scaling factor

When is small

  1. Good time resolution
  2. Bad frequency resolution
  3. High frequency, small scaling factor

In other words, the basis function can be regarded as an impulse response of a system with which the function has been filtered. The transformed signal provides information about the time and the frequency. Therefore, wavelet-transformation contains information similar to the short-time-Fourier-transformation, but with additional special properties of the wavelets, which show up at the resolution in time at higher analysis frequencies of the basis function. The difference in time resolution at ascending frequencies for the Fourier transform and the wavelet transform is shown below. Note however, that the frequency resolution is decreasing for increasing frequencies while the temporal resolution increases. This consequence of the Fourier uncertainty principle is not correctly displayed in the Figure.

This shows that wavelet transformation is good in time resolution of high frequencies, while for slowly varying functions, the frequency resolution is remarkable.

Another example: The analysis of three superposed sinusoidal signals with STFT and wavelet-transformation.

Wavelet compression

[edit]

Wavelet compression is a form of data compression well suited for image compression (sometimes also video compression and audio compression). Notable implementations are JPEG 2000, DjVu and ECW for still images, JPEG XS, CineForm, and the BBC's Dirac. The goal is to store image data in as little space as possible in a file. Wavelet compression can be either lossless or lossy.[5]

Method

[edit]

First a wavelet transform is applied. This produces as many coefficients as there are pixels in the image (i.e., there is no compression yet since it is only a transform). These coefficients can then be compressed more easily because the information is statistically concentrated in just a few coefficients. This principle is called transform coding. After that, the coefficients are quantized and the quantized values are entropy encoded and/or run length encoded.

A few 1D and 2D applications of wavelet compression use a technique called "wavelet footprints".[6][7]

Evaluation

[edit]

Requirement for image compression

[edit]

For most natural images, the spectrum density of lower frequency is higher.[8] As a result, information of the low frequency signal (reference signal) is generally preserved, while the information in the detail signal is discarded. From the perspective of image compression and reconstruction, a wavelet should meet the following criteria while performing image compression:

  • Being able to transform more original image into the reference signal.
  • Highest fidelity reconstruction based on the reference signal.
  • Should not lead to artifacts in the image reconstructed from the reference signal alone.

Requirement for shift variance and ringing behavior

[edit]

Wavelet image compression system involves filters and decimation, so it can be described as a linear shift-variant system. A typical wavelet transformation diagram is displayed below:

The transformation system contains two analysis filters (a low pass filter and a high pass filter ), a decimation process, an interpolation process, and two synthesis filters ( and ). The compression and reconstruction system generally involves low frequency components, which is the analysis filters for image compression and the synthesis filters for reconstruction. To evaluate such system, we can input an impulse and observe its reconstruction ; The optimal wavelet are those who bring minimum shift variance and sidelobe to . Even though wavelet with strict shift variance is not realistic, it is possible to select wavelet with only slight shift variance. For example, we can compare the shift variance of two filters:[9]

Biorthogonal filters for wavelet image compression
Length Filter coefficients Regularity
Wavelet filter 1 H0 9 .852699, .377402, -.110624, -.023849, .037828 1.068
G0 7 .788486, .418092, -.040689, -.064539 1.701
Wavelet filter 2 H0 6 .788486, .047699, -.129078 0.701
G0 10 .615051, .133389, -.067237, .006989, .018914 2.068

By observing the impulse responses of the two filters, we can conclude that the second filter is less sensitive to the input location (i.e. it is less shift variant).

Another important issue for image compression and reconstruction is the system's oscillatory behavior, which might lead to severe undesired artifacts in the reconstructed image. To achieve this, the wavelet filters should have a large peak to sidelobe ratio.

So far we have discussed about one-dimension transformation of the image compression system. This issue can be extended to two dimension, while a more general term - shiftable multiscale transforms - is proposed.[10]

Derivation of impulse response

[edit]

As mentioned earlier, impulse response can be used to evaluate the image compression/reconstruction system.

For the input sequence , the reference signal after one level of decomposition is goes through decimation by a factor of two, while is a low pass filter. Similarly, the next reference signal is obtained by goes through decimation by a factor of two. After L levels of decomposition (and decimation), the analysis response is obtained by retaining one out of every samples: .

On the other hand, to reconstruct the signal x(n), we can consider a reference signal . If the detail signals are equal to zero for , then the reference signal at the previous stage ( stage) is , which is obtained by interpolating and convoluting with . Similarly, the procedure is iterated to obtain the reference signal at stage . After L iterations, the synthesis impulse response is calculated: , which relates the reference signal and the reconstructed signal.

To obtain the overall L level analysis/synthesis system, the analysis and synthesis responses are combined as below:

.

Finally, the peak to first sidelobe ratio and the average second sidelobe of the overall impulse response can be used to evaluate the wavelet image compression performance.

Using a wavelet transform, the wavelet compression methods are adequate for representing transients, such as percussion sounds in audio, or high-frequency components in two-dimensional images, for example an image of stars on a night sky. This means that the transient elements of a data signal can be represented by a smaller amount of information than would be the case if some other transform, such as the more widespread discrete cosine transform, had been used.

Limitations

[edit]

While wavelet transforms offer theoretical advantages, their practical limitations have effectively limited wavelet compression to analyzing localized changes and transient signals. Despite decades of research, wavelet-based compression systems for common multimedia like audio and video do not consistently match the efficiency and perceptual quality of current Discrete Cosine Transform-based systems.[11]

For one-dimensional data like audio or ECGs, wavelets excel at representing and compressing transient signals—sudden, isolated events such as a drum hit in music or the sharp peaks in a heart rhythm. For example, the discrete wavelet transform has been successfully applied for the compression of electrocardiograph (ECG) signals.[12] However, for smooth, periodic signals, which make up much of typical audio, harmonic analysis in the frequency domain with Fourier-related transforms achieve better compression and sound quality. Compressing data that has both transient and periodic characteristics may be done with hybrid techniques that use wavelets along with traditional harmonic analysis. For example, the Vorbis audio codec primarily uses the modified discrete cosine transform to compress audio (which is generally smooth and periodic), however allows the addition of a hybrid wavelet filter bank for improved reproduction of transients.[13]

For higher-dimensional data, wavelet compression faces significant challenges. In video, for instance, modern compression techniques such as intra coding and motion compensation (predicting parts of an image based on what's next to it spatially and temporally) and mixed and dynamic block sizes become incredibly complex with wavelets because of their overlapping nature. This complexity translates to more processing power and slower speed, making them less practical for widespread use. Furthermore, while wavelets might score well on traditional measures such as PSNR, DCT blocks create a perception of sharpness that wavelets often lack, requiring higher bitrates to achieve similar subjective quality.[11]

Comparison with Fourier transform and time-frequency analysis

[edit]
Transform Representation Input
Fourier transform  : frequency
Time–frequency analysis time; frequency
Wavelet transform scaling ; time shift factor

Wavelets have some slight benefits over Fourier transforms in reducing computations when examining specific frequencies. However, they are rarely more sensitive, and indeed, the common Morlet wavelet is mathematically identical to a short-time Fourier transform using a Gaussian window function.[14] The exception is when searching for signals of a known, non-sinusoidal shape (e.g., heartbeats); in that case, using matched wavelets can outperform standard STFT/Morlet analyses.[15]

Other practical applications

[edit]

The wavelet transform can provide us with the frequency of the signals and the time associated to those frequencies, making it very convenient for its application in numerous fields. For instance, signal processing of accelerations for gait analysis,[16] for fault detection,[17] for the analysis of seasonal displacements of landslides,[18] for design of low power pacemakers and also in ultra-wideband (UWB) wireless communications.[19][20][21]

  1. Discretizing of the axis

    Applied the following discretization of frequency and time:

    Leading to wavelets of the form, the discrete formula for the basis wavelet:

    Such discrete wavelets can be used for the transformation:

  2. Implementation via the FFT (fast Fourier transform)

    As apparent from wavelet-transformation representation (shown below)

    where is scaling factor, represents time shift factor

    and as already mentioned in this context, the wavelet-transformation corresponds to a convolution of a function and a wavelet-function. A convolution can be implemented as a multiplication in the frequency domain. With this the following approach of implementation results into:

    • Fourier-transformation of signal with the FFT
    • Selection of a discrete scaling factor
    • Scaling of the wavelet-basis-function by this factor and subsequent FFT of this function
    • Multiplication with the transformed signal YFFT of the first step
    • Inverse transformation of the product into the time domain results in for different discrete values of and a discrete value of
    • Back to the second step, until all discrete scaling values for are processed
    There are many different types of wavelet transforms for specific purposes. See also a full list of wavelet-related transforms but the common ones are listed below: Mexican hat wavelet, Haar Wavelet, Daubechies wavelet, triangular wavelet.
  3. Fault detection in electrical power systems.[22]
  4. Locally adaptive statistical estimation of functions whose smoothness varies substantially over the domain, or more specifically, estimation of functions that are sparse in the wavelet domain.[23]

Time-causal wavelets

[edit]

For processing temporal signals in real time, it is essential that the wavelet filters do not access signal values from the future as well as that minimal temporal latencies can be obtained. Time-causal wavelets representations have been developed by Szu et al[24] and Lindeberg,[25] with the latter method also involving a memory-efficient time-recursive implementation.

Synchro-squeezed transform

[edit]

Synchro-squeezed transform can significantly enhance temporal and frequency resolution of time-frequency representation obtained using conventional wavelet transform.[26][27]

See also

[edit]

References

[edit]
  1. ^ Meyer, Yves (1992), Wavelets and Operators, Cambridge, UK: Cambridge University Press, ISBN 0-521-42000-8
  2. ^ Chui, Charles K. (1992), An Introduction to Wavelets, San Diego, CA: Academic Press, ISBN 0-12-174584-8
  3. ^ Daubechies, Ingrid. (1992), Ten Lectures on Wavelets, SIAM, ISBN 978-0-89871-274-2
  4. ^ Akansu, Ali N.; Haddad, Richard A. (1992), Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets, Boston, MA: Academic Press, ISBN 978-0-12-047141-6
  5. ^ JPEG 2000, for example, may use a 5/3 wavelet for lossless (reversible) transform and a 9/7 wavelet for lossy (irreversible) transform.
  6. ^ N. Malmurugan, A. Shanmugam, S. Jayaraman and V. V. Dinesh Chander. "A New and Novel Image Compression Algorithm Using Wavelet Footprints"
  7. ^ Ho Tatt Wei and Jeoti, V. "A wavelet footprints-based compression scheme for ECG signals". Ho Tatt Wei; Jeoti, V. (2004). "A wavelet footprints-based compression scheme for ECG signals". 2004 IEEE Region 10 Conference TENCON 2004. Vol. A. p. 283. doi:10.1109/TENCON.2004.1414412. ISBN 0-7803-8560-8. S2CID 43806122.
  8. ^ J. Field, David (1987). "Relations between the statistics of natural images and the response properties of cortical cells" (PDF). J. Opt. Soc. Am. A. 4 (12): 2379–2394. Bibcode:1987JOSAA...4.2379F. doi:10.1364/JOSAA.4.002379. PMID 3430225.
  9. ^ Villasenor, John D. (August 1995). "Wavelet Filter Evaluation for Image Compression". IEEE Transactions on Image Processing. 4 (8): 1053–60. Bibcode:1995ITIP....4.1053V. doi:10.1109/83.403412. PMID 18291999.
  10. ^ Simoncelli, E.P.; Freeman, W.T.; Adelson, E.H.; Heeger, D.J. (1992). "Shiftable multiscale transforms". IEEE Transactions on Information Theory. 38 (2): 587–607. doi:10.1109/18.119725. S2CID 43701174.
  11. ^ a b Garrett-Glaser, Jason (February 2, 2010). "The problems with wavelets". Diary Of An x264 Developer. Archived from the original on February 28, 2010.
  12. ^ Ramakrishnan, A.G.; Saha, S. (1997). "ECG coding by wavelet-based linear prediction" (PDF). IEEE Transactions on Biomedical Engineering. 44 (12): 1253–1261. doi:10.1109/10.649997. PMID 9401225. S2CID 8834327.
  13. ^ "Vorbis I specification". Xiph.Org Foundation. July 4, 2020. Archived from the original on April 3, 2022. Retrieved April 10, 2022. Vorbis I is a forward-adaptive monolithic transform CODEC based on the Modified Discrete Cosine Transform. The codec is structured to allow addition of a hybrid wavelet filterbank in Vorbis II to offer better transient response and reproduction using a transform better suited to localized time events.
  14. ^ Bruns, Andreas (2004). "Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches?". Journal of Neuroscience Methods. 137 (2): 321–332. doi:10.1016/j.jneumeth.2004.03.002. PMID 15262077. S2CID 21880274.
  15. ^ Krantz, Steven G. (1999). A Panorama of Harmonic Analysis. Mathematical Association of America. ISBN 0-88385-031-1.
  16. ^ Martin, E. (2011). "Novel method for stride length estimation with body area network accelerometers". 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems. pp. 79–82. doi:10.1109/BIOWIRELESS.2011.5724356. ISBN 978-1-4244-8316-7. S2CID 37689047.
  17. ^ Liu, Jie (2012). "Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection". Measurement Science and Technology. 23 (5): 1–11. Bibcode:2012MeScT..23e5604L. doi:10.1088/0957-0233/23/5/055604. S2CID 121684952.
  18. ^ Tomás, R.; Li, Z.; Lopez-Sanchez, J. M.; Liu, P.; Singleton, A. (June 1, 2016). "Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide". Landslides. 13 (3): 437–450. Bibcode:2016Lands..13..437T. doi:10.1007/s10346-015-0589-y. hdl:10045/62160. ISSN 1612-5118.
  19. ^ Akansu, A. N.; Serdijn, W. A.; Selesnick, I. W. (2010). "Emerging applications of wavelets: A review" (PDF). Physical Communication. 3: 1–18. doi:10.1016/j.phycom.2009.07.001.
  20. ^ Sheybani, E.; Javidi, G. (December 2009). "Dimensionality Reduction and Noise Removal in Wireless Sensor Network Datasets". 2009 Second International Conference on Computer and Electrical Engineering. Vol. 2. pp. 674–677. doi:10.1109/ICCEE.2009.282. ISBN 978-1-4244-5365-8. S2CID 17066179.
  21. ^ Sheybani, E. O.; Javidi, G. (May 2012). "Multi-resolution filter banks for enhanced SAR imaging". 2012 International Conference on Systems and Informatics (ICSAI2012). pp. 2702–2706. doi:10.1109/ICSAI.2012.6223611. ISBN 978-1-4673-0199-2. S2CID 16302915.
  22. ^ Silva, K. M.; Souza, B. A.; Brito, N. S. D. (October 2006). "Fault detection and classification in transmission lines based on wavelet transform and ANN". IEEE Transactions on Power Delivery. 21 (4): 2058–2063. doi:10.1109/TPWRD.2006.876659. S2CID 36881450.
  23. ^ Wasserman, L.A. (2005). All of Nonparametric Statistics.
  24. ^ Szu, Harold H.; Telfer, Brian A.; Lohmann, Adolf W. (1992). "Causal analytical wavelet transform". Optical Engineering. 31 (9): 1825. Bibcode:1992OptEn..31.1825S. doi:10.1117/12.59911.
  25. ^ Lindeberg, T. (January 23, 2023). "A time-causal and time-recursive scale-covariant scale-space representation of temporal signals and past time". Biological Cybernetics. 117 (1–2): 21–59. doi:10.1007/s00422-022-00953-6. PMC 10160219. PMID 36689001.
  26. ^ Daubechies, Ingrid; Lu, Jianfeng; Wu, Hau-Tieng (December 12, 2009). "Synchrosqueezed Wavelet Transforms: a Tool for Empirical Mode Decomposition". arXiv:0912.2437 [math.NA].
  27. ^ Qu, Hongya; Li, Tiantian; Chen, Genda (January 1, 2019). "Synchro-squeezed adaptive wavelet transform with optimum parameters for arbitrary time series". Mechanical Systems and Signal Processing. 114: 366–377. Bibcode:2019MSSP..114..366Q. doi:10.1016/j.ymssp.2018.05.020. S2CID 126007150.
[edit]
脓包用什么药膏 5月4日是什么星座 人妖是什么 大便不成形用什么药 黄瓜为什么叫黄瓜
血栓挂什么科 雄激素是什么意思 叶酸片治什么病 月经有黑色血块是什么原因 肠粘连会有什么症状
25属什么 10月25是什么星座 bart是什么意思 南无阿弥陀佛是什么意思 新加坡什么工作最挣钱
陈百强属什么生肖 十二月十四日是什么星座 花指什么生肖 四大菩萨分别保佑什么 ofs是什么意思
冬瓜炖什么好吃hcv8jop9ns6r.cn guess是什么牌子hcv8jop8ns6r.cn 梦见自己吐了是什么意思0297y7.com 阴疽是什么意思hcv9jop2ns9r.cn 什么是埋线双眼皮xianpinbao.com
为什么会长汗疱疹hcv9jop0ns6r.cn lc是什么意思hcv8jop7ns2r.cn 豆腐鱼是什么鱼hcv9jop4ns1r.cn 到底为什么hcv9jop3ns6r.cn 健身hit什么意思hcv9jop4ns1r.cn
售馨是什么意思hcv8jop9ns6r.cn 脾与什么相表里hcv9jop4ns0r.cn 小囊性灶是什么意思hcv8jop5ns6r.cn 医学pr是什么意思hcv8jop7ns6r.cn 上梁不正下梁歪是什么意思hlguo.com
形单影只什么意思hcv9jop5ns8r.cn 聚酰胺纤维是什么面料hcv8jop8ns6r.cn cts是什么意思xinmaowt.com 叶酸什么时候吃最好hcv8jop2ns6r.cn 吃什么水果对皮肤好hcv8jop3ns5r.cn
百度