然五行属性是什么| 炒菜用什么油好吃又健康| 红花对什么| 吲达帕胺片是什么药| 子宫肌瘤是什么原因导致的| 双喜临门是什么生肖| 人属于什么界门纲目科属种| 酒后吃什么解酒最快| 猫薄荷是什么| 甘油三酯高有什么症状| 心脏支架是什么材料做的| 黄褐色是什么颜色| 阑尾炎有什么症状表现| 星期狗什么意思| 什么菜不能放醋| 陈皮起什么作用| 政治面貌填什么| 当所有的人离开我的时候是什么歌| 手一直脱皮是什么原因| 什么食物对眼睛好| 螃蟹不能和什么一起吃| 单脐动脉对胎儿有什么影响| 男性尿路感染吃什么药| 什么治胃胀气| 苟且是什么意思| 桂花代表什么生肖| 屁多又臭是什么原因| 为什么女人要带阴环| 嗓子挂什么科| 吃洋葱有什么好处| 割包皮看什么科| b2c模式是什么意思| 脑子萎缩是什么原因造成的| 乙肝携带者是什么意思| 出汗太多吃什么药好| 遇见是什么意思| 腿发热是什么原因引起的| 瓦斯是什么| 昆仑雪菊有什么作用| 小知了叫什么| vr间隙是什么意思| 姹紫嫣红是什么意思| 化合物是什么| 高血压有什么症状表现| 多五行属什么| 细菌性阴道炎用什么药好得快| 晒后修复用什么比较好| 世界上最大的生物是什么| 台州为什么念第一声| 什么茶最好喝| 化学性肝损伤是指什么| 头骨凹陷是什么原因| 什么是碳足迹| 加湿器什么季节用最好| 入肉是什么意思| 手关节疼痛是什么原因| 肝回声密集是什么意思| 三千烦恼丝什么意思| 语重心长是什么意思| 一直打嗝是什么问题| 中国信仰什么教| 天赋是什么| 肚子疼吃什么药好| 睡醒手麻是什么原因引起的| 全身发烫但不发烧是什么原因| 八项药是什么药| 腋毛什么时候开始生长| 送男生什么生日礼物好| 什么的同学| 女性适合喝什么茶| 牙周炎挂什么科| 2021年是什么年| 裂隙灯能查出什么眼病| 舌头短是什么原因| 拿东西手抖是什么原因| 藿香正气水什么人不能喝| 天妇罗是什么意思| 蛇喜欢吃什么食物| 厅堂是什么意思| 金牛座有什么特点| 下巴的痣代表什么| 攒劲是什么意思| 线索是什么意思| 用一什么就什么造句| 6月23日是什么节日| 梦见棺材是什么征兆| 肉蔻炖肉起什么作用| 客厅挂钟放在什么位置好| 停滞是什么意思| mpa是什么单位| 梅花象征着什么| 松茸是什么东西| 尿里有泡沫是什么病| 罗汉果可以和什么一起泡水喝| 热伤风吃什么药好得快| 不可翻转干燥是什么意思| 一清二白是什么意思| 细菌感染是什么引起的| 过敏性鼻炎引起眼睛痒用什么药| jealousy是什么意思| 靓女是什么意思| 五月十六日是什么星座| 人参和什么泡酒能壮阳| 脾虚是什么原因引起的| 堤防是什么意思| 五谷指的是什么| 袢是什么意思| 瑶柱是什么东西| 恒心是什么意思| 小便尿出乳白色液体是什么问题| 尿泡沫多吃什么药| 猪巴皮是什么材质| 玉字五行属什么| 猪血和鸭血有什么区别| 人红是非多什么意思| 坐月子能吃什么菜| 皮肤癣用什么药| 掉头发吃什么药最有效| 霉菌性阴道炎有什么症状| 更年期补钙吃什么钙片好| 梦见别人笑什么意思| 打封闭是什么意思| 吃什么补心脏供血不足| 绿豆和什么相克| 医院属于什么行业| 做大生化挂什么科| 站姐是什么意思| 忍者神龟是什么意思| 股骨头坏死什么症状| 子官肌瘤吃什么食物| 五行属土缺命里缺什么| dob值阳性是什么意思| 6月份是什么星座的| 心经是什么意思| 口若什么| 有齿痕吃什么药| 眼睛干涩用什么药效果好| 骨折的人吃什么恢复快| 肺结核是什么原因引起的| 山竹什么样的好| 传销是什么意思| 卧推100公斤什么水平| 黑指甲是什么症状图片| 拉肚子喝什么水| 大脚趾发黑是什么原因| 鱼周念什么| 感染梅毒有什么症状| h皮带是什么牌子| 一个金字旁一个川读什么| 胃肠造影主要检查什么| 梦到自己怀孕是什么意思| 尿酸高平时要注意什么| 月经前腰疼的厉害是什么原因| 仙人掌有什么作用| 茜是什么意思| 舛是什么意思| 经血逆流的症状是什么| 喉咙细菌感染吃什么药| 脆皖鱼是什么鱼| 全飞秒手术是什么| 一年半载是什么意思| 红棕色是什么颜色| 手足口疫苗什么时候打| 小便发红是什么原因| squirrel是什么意思| 麦乳精是什么东西| 感冒有什么症状| 小孩心跳快是什么原因| 吧可以组什么词| 减肥吃什么药| prog是什么意思| 锦是什么意思| 什么是神话故事| 32周做什么检查| 谷氨酸钠是什么东西| 打两个喷嚏代表什么| 顶格是什么意思| 似曾相识是什么意思| 脉压是什么意思| cpa是什么意思| 吃什么减肚子上的赘肉最快| 经常头晕吃什么食物好| 小腿疼痛为什么| 宫颈糜烂是什么| 变态反应是什么意思| ray是什么意思| n t是什么检查| 反流性食管炎挂什么科| 4c是什么| 小儿鼻炎用什么药好| 张柏芝和谢霆锋为什么离婚| 边界欠清是什么意思| 脚底板疼是什么原因| 青苹果什么时候成熟| 一个山一个脊念什么| 痔疮不能吃什么| 骨折不能吃什么东西| 酊是什么意思| 挫伤用什么药| 脆豆腐是什么做的| 肛瘘是什么| 桂花代表什么生肖| 天津有什么好吃的| 甲钴胺是治什么病的| 甲亢能吃什么水果| 喝什么会变白| 什么叫试管婴儿| 色盲是什么遗传方式| 吃了桃子不能吃什么| 梦见吃水饺是什么预兆| 九牧王男装是什么档次| 腰酸是什么原因| 蚊子喜欢什么颜色| b站的硬币有什么用| 吃什么瘦肚子最快| 三月初九是什么星座| 什么是青光眼| ar是什么元素| 下岗是什么意思| 脚抽筋什么原因| 什么东西越洗越脏答案| 好汉不吃眼前亏是什么意思| 痤疮是什么引起的| 斑秃挂什么科| 什么头| 豆瓣是什么软件| 卡介苗为什么会留疤| 缺钾吃什么食物补得最快| 卒中中心是什么意思| 市政协常委是什么级别| 破溃是什么意思| 淮山是什么| 梦见自己的手镯断了什么意思| 指甲有竖纹是什么原因| 会厌炎是什么病| 早上眼屎多是什么原因| 全身浮肿是什么病| 吼不住是什么意思| 拉肚子是什么原因| pc材质是什么| 手指变形是什么原因| mmi是什么药| 白色加红色等于什么颜色| 经常头晕头疼是什么原因| 女生学什么专业好| 心脏缺血吃什么药| 电是什么| 手机越狱什么意思| 58什么意思| 阳历6月28日是什么星座| 浩浩荡荡是什么意思| 公假是什么意思| 属猪跟什么属相最配| 晚上手脚发热是什么原因| 晚上吃什么最健康| 为什么老是出汗| 苦口婆心是什么意思| 疣体是什么| 小说be是什么意思| 胃息肉是什么症状| 萎缩性胃炎什么症状| 改良剂是什么| 靶向药是什么意思| 控制欲强的人最怕什么| 百度Jump to content

人为什么会中暑

From Wikipedia, the free encyclopedia
The slope field of , showing three of the infinitely many solutions that can be produced by varying the arbitrary constant C.
百度 兰州市困难职工帮扶中心成立于2002年,通过开展大病救助、金秋助学、就业服务、技能培训等方式,一定程度上缓解了困难职工就医、子女就学等方面的压力,深受职工好评。

In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral[Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as F' = f.[1][2] The process of solving for antiderivatives is called antidifferentiation (or indefinite integration), and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as F and G.

Antiderivatives are related to definite integrals through the second fundamental theorem of calculus: the definite integral of a function over a closed interval where the function is Riemann integrable is equal to the difference between the values of an antiderivative evaluated at the endpoints of the interval.

In physics, antiderivatives arise in the context of rectilinear motion (e.g., in explaining the relationship between position, velocity and acceleration).[3] The discrete equivalent of the notion of antiderivative is antidifference.

Examples

[edit]

The function is an antiderivative of , since the derivative of is . Since the derivative of a constant is zero, will have an infinite number of antiderivatives, such as , etc. Thus, all the antiderivatives of can be obtained by changing the value of C in , where C is an arbitrary constant known as the constant of integration. The graphs of antiderivatives of a given function are vertical translations of each other, with each graph's vertical location depending upon the value C.

More generally, the power function has antiderivative if n ≠ −1, and if n = −1.

In physics, the integration of acceleration yields velocity plus a constant. The constant is the initial velocity term that would be lost upon taking the derivative of velocity, because the derivative of a constant term is zero. This same pattern applies to further integrations and derivatives of motion (position, velocity, acceleration, and so on).[3] Thus, integration produces the relations of acceleration, velocity and displacement:

Uses and properties

[edit]

Antiderivatives can be used to compute definite integrals, using the fundamental theorem of calculus: if F is an antiderivative of the continuous function f over the interval , then:

Because of this, each of the infinitely many antiderivatives of a given function f may be called the "indefinite integral" of f and written using the integral symbol with no bounds:

If F is an antiderivative of f, and the function f is defined on some interval, then every other antiderivative G of f differs from F by a constant: there exists a number c such that for all x. c is called the constant of integration. If the domain of F is a disjoint union of two or more (open) intervals, then a different constant of integration may be chosen for each of the intervals. For instance

is the most general antiderivative of on its natural domain

Every continuous function f has an antiderivative, and one antiderivative F is given by the definite integral of f with variable upper boundary: for any a in the domain of f. Varying the lower boundary produces other antiderivatives, but not necessarily all possible antiderivatives. This is another formulation of the fundamental theorem of calculus.

There are many elementary functions whose antiderivatives, even though they exist, cannot be expressed in terms of elementary functions. Elementary functions are polynomials, exponential functions, logarithms, trigonometric functions, inverse trigonometric functions and their combinations under composition and linear combination. Examples of these nonelementary integrals are

  • the error function
  • the Fresnel function
  • the sine integral
  • the logarithmic integral function and
  • sophomore's dream

For a more detailed discussion, see also Differential Galois theory.

Techniques of integration

[edit]

Finding antiderivatives of elementary functions is often considerably harder than finding their derivatives (indeed, there is no pre-defined method for computing indefinite integrals).[4] For some elementary functions, it is impossible to find an antiderivative in terms of other elementary functions. To learn more, see elementary functions and nonelementary integral.

There exist many properties and techniques for finding antiderivatives. These include, among others:

Computer algebra systems can be used to automate some or all of the work involved in the symbolic techniques above, which is particularly useful when the algebraic manipulations involved are very complex or lengthy. Integrals which have already been derived can be looked up in a table of integrals.

Of non-continuous functions

[edit]

Non-continuous functions can have antiderivatives. While there are still open questions in this area, it is known that:

  • Some highly pathological functions with large sets of discontinuities may nevertheless have antiderivatives.
  • In some cases, the antiderivatives of such pathological functions may be found by Riemann integration, while in other cases these functions are not Riemann integrable.

Assuming that the domains of the functions are open intervals:

  • A necessary, but not sufficient, condition for a function f to have an antiderivative is that f have the intermediate value property. That is, if [a, b] is a subinterval of the domain of f and y is any real number between f(a) and f(b), then there exists a c between a and b such that f(c) = y. This is a consequence of Darboux's theorem.
  • The set of discontinuities of f must be a meagre set. This set must also be an F-sigma set (since the set of discontinuities of any function must be of this type). Moreover, for any meagre F-sigma set, one can construct some function f having an antiderivative, which has the given set as its set of discontinuities.
  • If f has an antiderivative, is bounded on closed finite subintervals of the domain and has a set of discontinuities of Lebesgue measure 0, then an antiderivative may be found by integration in the sense of Lebesgue. In fact, using more powerful integrals like the Henstock–Kurzweil integral, every function for which an antiderivative exists is integrable, and its general integral coincides with its antiderivative.
  • If f has an antiderivative F on a closed interval , then for any choice of partition if one chooses sample points as specified by the mean value theorem, then the corresponding Riemann sum telescopes to the value . However, if f is unbounded, or if f is bounded but the set of discontinuities of f has positive Lebesgue measure, a different choice of sample points may give a significantly different value for the Riemann sum, no matter how fine the partition. See Example 4 below.

Some examples

[edit]
  1. The function

    with is not continuous at but has the antiderivative

    with . Since f is bounded on closed finite intervals and is only discontinuous at 0, the antiderivative F may be obtained by integration: .
  2. The function with is not continuous at but has the antiderivative with . Unlike Example 1, f(x) is unbounded in any interval containing 0, so the Riemann integral is undefined.
  3. If f(x) is the function in Example 1 and F is its antiderivative, and is a dense countable subset of the open interval then the function has an antiderivative The set of discontinuities of g is precisely the set . Since g is bounded on closed finite intervals and the set of discontinuities has measure 0, the antiderivative G may be found by integration.
  4. Let be a dense countable subset of the open interval Consider the everywhere continuous strictly increasing function It can be shown that
    Figure 1.
    Figure 2.

    for all values x where the series converges, and that the graph of F(x) has vertical tangent lines at all other values of x. In particular the graph has vertical tangent lines at all points in the set .

    Moreover for all x where the derivative is defined. It follows that the inverse function is differentiable everywhere and that

    for all x in the set which is dense in the interval Thus g has an antiderivative G. On the other hand, it can not be true that

    since for any partition of , one can choose sample points for the Riemann sum from the set , giving a value of 0 for the sum. It follows that g has a set of discontinuities of positive Lebesgue measure. Figure 1 on the right shows an approximation to the graph of g(x) where and the series is truncated to 8 terms. Figure 2 shows the graph of an approximation to the antiderivative G(x), also truncated to 8 terms. On the other hand if the Riemann integral is replaced by the Lebesgue integral, then Fatou's lemma or the dominated convergence theorem shows that g does satisfy the fundamental theorem of calculus in that context.
  5. In Examples 3 and 4, the sets of discontinuities of the functions g are dense only in a finite open interval However, these examples can be easily modified so as to have sets of discontinuities which are dense on the entire real line . Let Then has a dense set of discontinuities on and has antiderivative
  6. Using a similar method as in Example 5, one can modify g in Example 4 so as to vanish at all rational numbers. If one uses a naive version of the Riemann integral defined as the limit of left-hand or right-hand Riemann sums over regular partitions, one will obtain that the integral of such a function g over an interval is 0 whenever a and b are both rational, instead of . Thus the fundamental theorem of calculus will fail spectacularly.
  7. A function which has an antiderivative may still fail to be Riemann integrable. The derivative of Volterra's function is an example.

Basic formulae

[edit]
  • If , then .

See also

[edit]

Notes

[edit]
  1. ^ Antiderivatives are also called general integrals, and sometimes integrals. The latter term is generic, and refers not only to indefinite integrals (antiderivatives), but also to definite integrals. When the word integral is used without additional specification, the reader is supposed to deduce from the context whether it refers to a definite or indefinite integral. Some authors define the indefinite integral of a function as the set of its infinitely many possible antiderivatives. Others define it as an arbitrarily selected element of that set. This article adopts the latter approach. In English A-Level Mathematics textbooks one can find the term complete primitive - L. Bostock and S. Chandler (1978) Pure Mathematics 1; The solution of a differential equation including the arbitrary constant is called the general solution (or sometimes the complete primitive).

References

[edit]
  1. ^ Stewart, James (2008). Calculus: Early Transcendentals (6th ed.). Brooks/Cole. ISBN 978-0-495-01166-8.
  2. ^ Larson, Ron; Edwards, Bruce H. (2009). Calculus (9th ed.). Brooks/Cole. ISBN 978-0-547-16702-2.
  3. ^ a b "4.9: Antiderivatives". Mathematics LibreTexts. 2025-08-14. Retrieved 2025-08-14.
  4. ^ "Antiderivative and Indefinite Integration | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2025-08-14.

Further reading

[edit]
[edit]
断念是什么意思 吃红薯有什么好处 一什么商店 僵尸为什么怕糯米 肿瘤挂什么科
眼睛发炎吃什么消炎药 水军什么意思 2100年是什么年 滞气是什么意思 4月4日是什么日子
想吐吃什么药可以缓解 宫寒可以吃什么水果 srpl是什么药 唉声叹气是什么意思 尿酸高是什么情况
轶字五行属什么 为什么心率过快 宝宝喝什么奶粉好 什么是普洱茶 手上有痣代表什么
4月7日什么星座hcv9jop6ns7r.cn model是什么牌子hcv8jop2ns0r.cn 颈椎病吃什么药最好hcv8jop0ns7r.cn 胃病四联疗法是什么药hcv8jop0ns4r.cn 梦见在河里抓鱼是什么征兆hcv8jop0ns4r.cn
脚真菌感染用什么药hcv8jop3ns2r.cn 冲猪煞东是什么意思hcv9jop0ns6r.cn 醋酸菌是什么菌hcv9jop0ns3r.cn 热射病什么症状0735v.com nlp是什么意思hcv9jop7ns5r.cn
考试前紧张吃什么药最好能缓解hcv7jop5ns5r.cn 睡眠浅是什么原因hcv8jop5ns0r.cn 耳什么目明hcv8jop8ns7r.cn 怕什么来什么travellingsim.com 尿道感染吃什么药hcv7jop5ns6r.cn
月经快来了有什么征兆wuhaiwuya.com 100年前是什么朝代hcv7jop6ns5r.cn 虎是什么意思hcv7jop4ns8r.cn ccp是什么意思hcv8jop2ns6r.cn 为什么白带是褐色的huizhijixie.com
百度