光天化日什么意思| 虎皮兰开花寓意什么| 牛黄是什么东西| 周公解梦梦见蛇是什么意思| 牛顿三大定律是什么| 中国特工组织叫什么| 紫微星是什么意思| 右侧肋骨下方是什么器官| 拔萝卜是什么意思| 犯贱是什么意思| 1998属什么| 连云港有什么特产| 东方是什么意思| 孽障是什么意思| 节肢动物用什么呼吸| 银五行属性是什么| 验血能查出什么| 38年属什么生肖| 试管婴儿什么价格| 上官是什么意思| 尾椎骨疼是什么原因| 画肖指什么生肖| 2月12号是什么星座| 山地自行车什么牌子好| 衣字旁有什么字| 杵状指见于什么疾病| 缺钾有什么表现和症状| 排骨和什么一起炖好吃| 鹅吃什么食物| 灯笼裤配什么鞋子好看| 脚脖子疼是什么原因| 爽是什么结构| 着重号是什么符号| 窦性心律什么意思| 朝鲜战争的起因是什么| 浑身痒是什么原因| 一个火一个华念什么| 2022年属虎的是什么命| 口炎念什么| 长长的柳条像什么| 6月6什么星座| 手机壳买什么材质的好| 猫怕什么声音| 按摩脚底有什么好处| 肾阳虚有什么症状男性| pw是什么意思| 去草原穿什么衣服拍照好看| 农历10月14日是什么星座| 凌晨4点是什么时辰| 手串14颗代表什么意思| 逆天是什么意思| 什么是形而上学| 子宫腺肌症是什么原因引起的| 洲际导弹是什么意思| 胎盘低置需要注意什么| 金屋藏娇是什么意思| 宫颈炎吃什么药好得快| 萎缩性胃炎能吃什么水果| 碧螺春属于什么茶| 枸杞和什么搭配壮阳| 十一月二十五是什么星座| 什么原因导致脑出血| 小孩子流鼻血是什么原因| 肠易激综合征是什么病| 巡演是什么意思| 夏天适合种什么水果| 吃洋葱有什么好处| 特别嗜睡是什么原因| 12月3日什么星座| 吃避孕药有什么副作用| 伤口发炎化脓用什么药| 当归长什么样的图片| 失信名单有什么影响| 李讷为什么不姓毛| 异父异母是什么意思| 什么又什么| 白酒是什么时候出现的| 头发长的慢是什么原因| 阿奇霉素主治什么病| 但微颔之的之是什么意思| 口红是什么做的| 吃什么对心脏有好处| 圆脸适合什么发型短发| 肠胃胀气吃什么药| 花雕酒是什么酒| 起鸡皮疙瘩是什么原因| 子宫有积液是什么原因引起的| 做脑电图挂什么科| 文房四宝是指什么| 医学pr是什么意思| 吃什么能让子宫瘤变小| 脑萎缩吃什么药能控制| 左眼皮一直跳是什么意思| 脚痛挂什么科| 洋酒兑什么饮料好喝| 关节痛挂号挂什么科| 凝聚力是什么意思| 甲状腺4级是什么意思| 喉结不明显的男生是什么原因| 傲娇是什么意思| 吃阿胶对女人有什么好处| 什么的树影| a4纸可以折什么| 生粉是什么| 腔调是什么意思| 天天想睡觉没精神是什么原因| 实至名归什么意思| 经期不能吃什么| asd什么意思| 六月初一什么日子| miniso是什么意思| 251什么意思| 补肾固精吃什么药好| cos代表什么意思| 黄芪和什么搭配不上火| 铅超标有什么症状| 王加玉念什么| 牛肉烧什么好吃| 十二月七号是什么星座| adhd是什么| 野蛮生长是什么意思| 司南是什么| 为什么不愿意工作| 魔芋是什么东西做的| 干白是什么酒| 小妹是什么意思| 房产证改名字需要什么手续| miu什么牌子| 指甲横纹是什么原因| 兰花是什么颜色| est.是什么意思| 知性是什么类型的女人| 男人遗精是什么原因| 脂蛋白是什么| 嘴唇轻微发麻什么病兆| 提辖相当于现在什么官| 寒湿重吃什么中成药| 氢是什么| 远香近臭是什么意思| 张飞穿针歇后语下一句是什么| 乳腺ca是什么意思| 无限极是干什么的| 喜欢紫色的人是什么性格| 舅舅的儿子叫什么| 疑问是什么意思| 肺部斑片状高密度影是什么意思| 开除党籍有什么影响| aps是什么意思| 人几读什么| 肝肾衰竭有什么症状| 什么胃病需要做手术| 吃什么对子宫好| 处女膜是什么样的| 什么的柏树| 鸿运当头是什么菜| 举牌是什么意思| 散人是什么意思| 不走寻常路是什么意思| 人为什么要洗澡| 海苔是什么做的| 梦见死蛇是什么预兆| 痤疮是什么意思| 为什么身体没力气也没有精神| 97年属什么的生肖| 肾结石看病挂什么科室| 驾驶证b2能开什么车| 左眉毛上有痣代表什么| 娃哈哈纯净水是什么水| 2006年是什么年| 测脸型适合什么发型| 吃黄芪有什么好处| opo是奶粉里的什么成分| bpd是胎儿的什么意思| 动脉导管未闭是什么意思| 十二指肠球炎是什么意思| 风平浪静是什么生肖| 什么护肤品好用| 泡脚不出汗是什么原因| 什么就像什么一样| 去越南要注意什么| mt是什么意思| 心跳加速心慌吃什么药| 拉肚子拉稀水吃什么药管用| 月经期间适合吃什么水果| 地方是什么意思| 美帝是什么意思| 甲状腺1类是什么意思| 黄油是什么意思| 吃羊肉不能吃什么水果| 草木皆兵是什么意思| 腰斩什么意思| 半身不遂是什么原因引起的| 盐为什么要加碘| 干咳吃什么药| 湿热是什么原因引起的| 呀啦嗦是什么意思| 查血管堵塞做什么检查| 梦泪什么意思| 促甲状腺素高是什么原因| 节节草煮水喝治什么病| 滴虫性阴道炎吃什么药| 韩国是什么民族| 什么是cg| europe是什么意思| 枪是什么生肖| 右位主动脉弓是什么意思| 舌苔发黑是什么原因引起的| 月经来有血块是什么原因| 胆囊炎不能吃什么食物| 鼻子发痒是什么原因引起的| 土固念什么| edc是什么| 岔气了吃什么药| 行房时间短吃什么药| 鼻涕是绿色的是什么原因| 老鼠长什么样子图片| 糖丸是什么疫苗| 抗风疹病毒抗体igg高是什么意思| 品牌主理人是什么意思| 嘴皮发白是什么原因| 小三是什么意思| 枸杞和什么搭配壮阳| 一月10号是什么星座| 指甲有条纹是什么原因| loewe是什么意思| 煮毛豆放什么调料| 黄雀是什么鸟| 去火喝什么茶最好| 梦见做饭是什么意思| 洋姜有什么功效与作用| 野生葛根粉有什么功效| 沉冤得雪是什么意思| 更年期什么意思| 牙龈肿是什么原因引起的| 疣是什么病| dpm值是什么意思| 小腿抽筋什么原因| 每天喝奶茶有什么危害| 什么样的房子不能住人脑筋急转弯| 芳菲的意思是什么| 鞋底md是什么材质| 谷草谷丙是什么| 风热感冒什么症状| 什么米最贵| 彩色多普勒超声检查是什么| 女人长期做俯卧撑有什么效果| 锁阳泡酒有什么功效| 多吃什么可以长头发| 物流是什么| 不什么其什么| 包皮瘙痒用什么药| 蚊子怕什么植物| 印度属于什么亚| 什么是亚健康| 1117什么星座| 什么属相不能戴貔貅| 犟驴是什么意思| 有所作为的意思是什么| 吃什么不会胖| 尿肌酐高说明什么| 尿胆红素高是什么原因| 降压药什么时间吃最好| 后背发冷发凉属于什么症状| toshiba是什么牌子| 百度Jump to content

新英雄源氏、新战场花村即将加入《风暴英雄》2.0

From Wikipedia, the free encyclopedia
百度 在特朗普看来,公平贸易比自由贸易更为可取,所谓公平与否,贸易逆差被认为是一个重要指标。

In game theory, a concave game is a generalization of the normal-form game defined by Rosen.[1] He extended the theorem on existence of a Nash equilibrium, which John Nash originally proved for normal-form games, to concave games.

From normal-form games to concave games

[edit]

We will describe the generalization step by step.

1. In a normal-form game, each player i can choose one of mi pure actions. The set of strategies available to each player is the set of lotteries over the pure actions, which is a simplex in Rmi.

  • In a concave game, the set of strategies available to each player may be any convex set in Rmi.

2. In a normal-form game, the set of strategies available to each player is independent of the strategies chosen by other players. This means that the set of all possible strategy profiles (denoted S) is a Cartesian product of the sets of strategies available to the players (in other words, the constraints on each player's choices are orthogonal).

  • In a concave game, the set of strategy profiles may be any convex set in Rm (where m:=m1+...+mn). This means that the constraints on each player's choice are coupled - each player's available strategies may depend on what other players choose (such "coupled constraints" were also studied earlier by Debreu[2]).

3. In a normal-form game, the utility function of each player i (denoted ui - a real-valued function on S) is a linear function in each of its components, for any fixed value of the other components (for each agent j, given any choice of strategies by the other agents, the payoff of agent i is a linear function in the probabilities by which agent j chooses his pure actions).

  • In a concave game, each ui can be any continuous function that is concave in the strategy of agent i.
  • To state this property more explicitly, fix some strategies for all players except i; denote them by x1,...,xi-1,xi+1,...,xn, or using the shorthand notation x-i. Fix some two possible strategies for player i; denote them by xi, yi, such that both (xi,x-i) and (yi,x-i) are in S. Choose some value t in [0,1]. Note that, since S is convex, every convex combination of xi, yi is in S too; particularly, (1-t)*xi+t*yi is in S. The concavity requirement is that ui[(1-t)*xi+t*yi] ≥ (1-t)*ui(xi) + t*ui(yi).

Existence of equilibrium

[edit]

If the above conditions hold (that is, the space S of possible strategy profiles is convex, and each payoff function ui is continuous in all strategies and of all players concave in the strategy of player i), then an equilibrium exists.[1]: Thm.1  The proof uses the Kakutani fixed-point theorem.

Uniqueness of equilibrium

[edit]

Rosen also proved that, under certain technical conditions which include strict concavity, the equilibrium is unique. The conditions are explained below.

Assume that the space S of allowed strategy profiles is defined by some k functions (representing constraints), that is, . In a normal-form game, the constraint functions are linear functions defining the simpices of the players; in a concave game, the hj can be any concave function of x. For the uniqueness proof, it is also required that each hj has continuous first derivatives at any x in S.

Assume also that, for each player i, the utility function ui has continuous first derivatives at the components of xi (that is, each player's utility is continuously differentiable in the player's own strategy).

For any fixed positive vector r>0 in Rn, define the r-weighted-sum of the players' payoffs:

.

Define the pseudogradient of f:

where is the gradient of ui with respect to the xi components. So is a vector in Rmi and g(x,r) is a vector in Rm.

We say that f is diagonally-strictly-concave at r if for every x,y in S:

  • For orthogonal constraint sets, if there exists some r>0 for which f is diagonally-strictly-concave at r, then the concave game has a unique equilibrium.[1]: Thm.2 
  • For coupled constraint sets, if there exists a convex subset Q of Rm such that, for every r in Q, f is diagonally-strictly-concave at r, then for each r in Q, the game has a unique r-normalized equilibrium (an equilibrium where the Lagrange multipliers have the same proportion as r).[1]: Thm.3 

A sufficient condition for f being diagonally-strictly-concave at r is that the symmetric matrix G(x,r)+GT(x,r) is negative definite.[1]: Thm.5  See the paper for an example for bimatrix games.

Convergence to equilibrium

[edit]

Consider a dynamic model of a concave game in which each player changes his strategy such that the strategy-profile remains in S, and subject to that, his utility increases. Each player i changes his strategy at rate ri in the direction of the gradient defining the maximum utility increase subject to the constraints. This results in a set of n differential equations. For any concave game and any staring point in S, this set of differential equations has a continuous solution x(t) that remains in S for all t>0.[1]: Thm.7 

If, in addition, the matrix G(x,r)+GT(x,r) is negative definite for all x in S, then the solution x(t) converges to an equilibrium point as t approaches infinity.[1]: Thm.8 

If, in addition, the matrix G(x,r)+GT(x,r) is negative definite for all x in S, then the solution x(t) converges to the unique r-normalized equilibrium point.[1]: Thm.9 

Correlated equilibrium

[edit]

Takashi Ui[3] shows that the same condition that guarantees uniqueness of a Nash equilibrium also guarantees uniqueness of a Correlated equilibrium. Moreover, an even weaker condition guarantees the uniqueness of a correlated equilibrium - a generalization of a condition proved by Abraham Neyman.[4]

Computation of equilibrium

[edit]

Based on the above results, it is possible to compute equilibrium points for concave games using gradient methods for convex optimization.[1]

Theory

[edit]

Papadimitriou, Vlatakis-Gkaragkounis and Zampetakis[5] prove that computing an equilibrium in a concave game is PPAD-complete. In fact, they prove that the problem is in PPAD even for general concave games, and it is PPAD-hard even in the special case of strongly-concave utilities that can be expressed as multivariate polynomials of a constant degree with axis-aligned box constraints.

Filos-Ratsikas, Hansen, Hogh and Hollender[6]

Practice

[edit]

Arrow and Hurwicz[7] presented gradient methods for solving two-player zero-sum games with non-linear utilities.

Krawczyk and Uryasev[8] studied infinite games with nonlinear utilities and coupled constraints. Starting from an existing Relaxation method, they improved it by adding steepest-descent step-size control and other improvements, and proved that it indeed converges to an equiilbrium. They tested their algorithm numerically on several applications, such as pollution of a river basin, and showed that it converges quickly on a wide range of parameters.

Krawczyk[9] explains numerical methods converging to an equilibrium, focusing on the case of coupled constraints. He presents several application examples using a Matlab suite called NIRA.

Chernov[10] presents two numerical search approaches for computing equilibrium points, that have guaranteed convergence without additional requirements on the objective functions: (1) using the Hooke-Jeeves method for residual function minimization (2) an intermediate between the relaxation algorithm and the Hooke-Jeeves method of configurations. Convergence is proved for one-dimensional sets of players strategies. The approaches are tested using numerical experiments.

Variants

[edit]

Flam and Ruzcynzki[11] define a convex-concave game. This is a game in which the space S of strategy profiles is convex, as in Rosen's definition. But instead of requiring smoothness and other conditions on g(x,r), they allow non-smooth data, and only require that the following function is convex in x and concave in y: .

For such convex-concave games, they present two algorithms for finding equilibria, both using partial regularizations and relaxed subgradient projections. They prove that these algorithms converge.

See also

[edit]

References

[edit]
  1. ^ a b c d e f g h i Rosen, J. B. (1965). "Existence and Uniqueness of Equilibrium Points for Concave N-Person Games". Econometrica. 33 (3): 520–534. doi:10.2307/1911749. hdl:2060/19650010164. ISSN 0012-9682. JSTOR 1911749.
  2. ^ Debreu, Gerard (October 1952). "A Social Equilibrium Existence Theorem*". Proceedings of the National Academy of Sciences. 38 (10): 886–893. doi:10.1073/pnas.38.10.886. PMC 1063675. PMID 16589195.
  3. ^ Ui, Takashi (2025-08-14). "Correlated equilibrium and concave games". International Journal of Game Theory. 37 (1): 1–13. doi:10.1007/s00182-007-0098-x. ISSN 1432-1270.
  4. ^ Neyman, Abraham (2025-08-14). "Correlated equilibrium and potential games". International Journal of Game Theory. 26 (2): 223–227. doi:10.1007/BF01295851. ISSN 1432-1270.
  5. ^ Papadimitriou, Christos H.; Vlatakis-Gkaragkounis, Emmanouil-Vasileios; Zampetakis, Manolis (2025-08-14), The Computational Complexity of Multi-player Concave Games and Kakutani Fixed Points, arXiv, doi:10.48550/arXiv.2207.07557, arXiv:2207.07557, retrieved 2025-08-14
  6. ^ Filos-Ratsikas, Aris; Hansen, Kristoffer Arnsfelt; H?gh, Kasper; Hollender, Alexandros (2025-08-14), PPAD-membership for Problems with Exact Rational Solutions: A General Approach via Convex Optimization, arXiv, doi:10.48550/arXiv.2312.01237, arXiv:2312.01237, retrieved 2025-08-14
  7. ^ Arrow, Kenneth; Hurwicz, Leonid (April 1957). "Gradient Methods for Constrained Maxima". Operations Research. 5 (2): 258–265. doi:10.1287/opre.5.2.258. ISSN 0030-364X.
  8. ^ Krawczyk, Jacek B.; Uryasev, Stanislav (2025-08-14). "Relaxation algorithms to find Nash equilibria with economic applications". Environmental Modeling & Assessment. 5 (1): 63–73. doi:10.1023/A:1019097208499. ISSN 1573-2967.
  9. ^ Krawczyk, Jacek (2025-08-14). "Numerical solutions to coupled-constraint (or generalised Nash) equilibrium problems". Computational Management Science. 4 (2): 183–204. doi:10.1007/s10287-006-0033-9. ISSN 1619-6988.
  10. ^ Chernov, A. V. (2025-08-14). "On Some Approaches to Find Nash Equilibrium in Concave Games". Automation and Remote Control. 80 (5): 964–988. doi:10.1134/S0005117919050138. ISSN 1608-3032.
  11. ^ Fl?m, S. D.; Ruszczyński, A. (March 2008). "Finding normalized equilibrium in convex-concave games". International Game Theory Review. 10 (01): 37–51. doi:10.1142/S0219198908001765. ISSN 0219-1989.
八月2号是什么星座 玉字五行属什么 抬头纹用什么护肤品可以去除 什么枝条 潜能是什么意思
小腹疼痛什么原因 后背发热是什么原因 佛是什么生肖 杨公忌日是什么意思 一直打嗝是什么问题
阴道有灼热感是什么原因 补气血用什么泡水喝 茶叶蛋用什么茶叶 气血淤堵吃什么药 倪字五行属什么
美尼尔综合症是一种什么病 母仪天下是什么意思 格桑是什么意思 脚气吃什么药 9月19日是什么星座
1956属什么生肖hcv7jop4ns8r.cn 膝盖内侧疼是什么原因hcv8jop0ns5r.cn 宝宝手脚冰凉是什么原因hcv9jop1ns3r.cn 姨妈没来是什么原因hcv8jop2ns7r.cn 省公安厅厅长是什么级别hcv8jop0ns8r.cn
啤酒不能和什么一起吃travellingsim.com 活字印刷术是什么时候发明的hcv9jop2ns9r.cn 脚背肿是什么原因hcv8jop2ns7r.cn 些几是什么意思0297y7.com speedo是什么牌子hcv8jop9ns6r.cn
肝火旺盛吃什么中成药hcv7jop4ns6r.cn 女孩子学什么专业hcv7jop4ns5r.cn 癫痫病吃什么药hcv8jop6ns5r.cn 人为什么要抽烟hcv9jop3ns1r.cn 评头论足什么意思hcv9jop8ns0r.cn
淋巴肉为什么不能吃hcv9jop7ns5r.cn 朝圣者是什么意思hcv9jop5ns4r.cn 顺钟向转位是什么意思bjhyzcsm.com 台风什么时候走hcv9jop3ns0r.cn 什么是签注hcv8jop8ns5r.cn
百度