喝中药为什么会拉肚子| bella什么意思| 半夜猫叫有什么预兆| 门户网站是什么| 女人吃芡实有什么好处| 双相情感障碍吃什么药| 网飞是什么| 泥鳅吃什么饲料| 群众路线是什么| 肝血不足吃什么补最快| 妯娌是什么意思| 苏州五行属什么| paris什么意思| 什么花是红色的| 脚底发黄是什么原因| 最近爆发什么病毒感染| 洋葱对肝脏有什么好处| tct是什么| 什么疲倦| 尿酸高去医院挂什么科| 针眼是什么样子的图片| helen是什么意思| 梦到鹦鹉预示着什么| 消防队属于什么编制| 弹力棉是什么面料| 生理盐水有什么用| 拖鞋什么材质的好| 地图舌吃什么好得快| 男人精子少吃什么药| 尿道炎吃什么药最好| 股骨头疼痛什么原因| 三焦是什么| 父母是什么意思| 少字五行属什么| 知秋是什么意思| 尿酸高去医院挂什么科| pussy是什么意思| 子宫肌瘤伴钙化是什么意思| 胎停了有什么症状| mp5是什么| 头发出油是什么原因| 榴莲和什么食物相克| 料酒可以用什么代替| 一个彭一个瓦念什么| 发物有什么| 给女生送礼物送什么好| 跑单是什么意思啊| 梦见雪地是什么征兆| 9月26号是什么星座| green是什么颜色| 指滑是什么意思| 逆天是什么意思| 1893年属什么生肖| 砖红色是什么颜色| 痔疮疼痛用什么药| 什么的动作| 行号是什么| 4月29号是什么星座| 爬山虎是什么茎| 竟然是什么意思| 女性做B超挂什么科| 血小板高是什么问题| 9527是什么意思| 地铁站务员是干什么的| 是什么部首| 雌激素过高吃什么药| 三七和田七有什么区别| 利郎男装是什么档次的| 急支糖浆是什么梗| lyocell是什么面料| 加油站为什么不能打电话| 淡竹叶有什么功效| 中国第一长洞是什么| 6.20是什么星座| 感冒咳嗽可以吃什么水果| 庞统为什么要献连环计| 白醋和小苏打一起用起什么效果| 血管钙化是什么意思| 尿道感染是什么原因| 胰腺炎不能吃什么| 胃溃疡a1期是什么意思| 小孩头发黄是什么原因| 2008年属什么生肖| 肿瘤指标偏高什么意思| 灌肠用什么水| 非那根又叫什么| 肠痉挛吃什么药| 大麦是什么| 姓许的女孩取什么名字好听| 乳清粉是什么东西| 诱导是什么意思| 上海什么时候解放的| 什么口服液补血补气最好| 美帝是什么意思| 煮牛肉放什么容易烂| 过敏有什么症状| 吃中药忌口都忌什么| 日文是什么字| 泡酒用什么容器好| 什么样的伤口需要缝针| HCG 是什么| 鸡冠花什么时候开花| 内热吃什么药清热解毒| 讳疾忌医是什么意思| 谷维素片治什么病| 贫血吃什么最好| 什么人生病不看医生| 真正的朋友是什么| 1954年出生属什么| 5月30是什么星座| 电脑为什么打不开| 鸟屎掉头上有什么预兆| 副营长是什么军衔| 指甲凹凸不平什么原因| 虾皮不能和什么一起吃| 世界上最大的单位是什么| 尿道流脓吃什么药| 1988是什么生肖| 中国属于什么亚| 梦到开车是什么意思| 印是什么意思| 检察院是干什么的| 补气血吃什么食物| 油面是什么| 八点半是什么时辰| 胸是什么| 尿里加什么能冒充怀孕| 杏仁治什么病| 眼睛干涩疼痛用什么滴眼液好| 梦到自己掉头发是什么预兆| 割痔疮后吃什么恢复快| 什么是腺瘤| 李莫愁的徒弟叫什么| 云州是现在的什么地方| 丝棉是什么材料| 全距是什么意思| 旅游需要带什么东西| 腿上紫色血丝什么原因| 肚子为什么会胀气| 伤口好转的迹象是什么| 六六大顺是什么意思| 乌灵参是什么东西| 吃什么可以提高新陈代谢| 眼睛发炎吃什么药| 味精和鸡精有什么区别| 胰腺ca是什么意思| 从容不迫什么意思| 黑洞是什么意思| 重阳节吃什么好| 5月28是什么星座| 5到7点是什么时辰| 全运会是什么| 夏天用什么护肤品比较好| 婆婆是什么意思| 盆腔炎用什么消炎药好| 太平鸟属于什么档次| 怀孕第一个月有什么反应| 为什么午睡起来会头疼| 犹太人什么意思| 全血是什么意思| 婴儿反复发烧是什么原因引起的| 胃息肉吃什么好| 4月6号是什么星座| 红薯什么时候传入中国| 曹丕为什么不杀曹植| 燕窝什么时候吃好| 槟榔是什么味道| 小朋友眼袋很重是什么原因| 坐月子吃什么水果好| 什么是地包天牙齿| 伤风感冒吃什么药| kamagra是什么药| 淋巴结肿大是什么样子| 肝s4钙化灶是什么意思| 做什么业务员好| 明了是什么意思| 扁桃体结石长什么样| 胰腺管扩张是什么原因| 夜开花是什么菜| 口腔科主要看什么| 麦冬有什么作用| 车挂件挂什么保平安好| 漏斗胸是什么原因造成的| 女生下面叫什么| 血糖高吃什么主食好| 农历五月二十一是什么星座| 轭是什么意思| 动物的耳朵有什么作用| 梦见大黑蛇是什么预兆| 肺结节手术后吃什么好| 上吐下泻是什么原因| 甲亢吃什么好的更快| 白血球低是什么原因| 耳朵里发炎用什么药好| 霸王硬上弓什么意思| 羽字属于五行属什么| 3楼五行属什么| 寅木是什么木| 鼻衄是什么意思| 什么是肝脏纤维化| 无意识是什么意思| 脚上有青筋是什么原因| 突然头晕是什么情况| 病毒性肠炎吃什么药| 没有奶水怎么办吃什么能下奶| 男生小肚子疼是什么原因| 世界上最深的湖是什么| 小腿浮肿什么原因| 欲钱知吃月饼是什么生肖| 精血亏虚吃什么中成药| 怀孕前期有什么征兆| 皂基是什么| 白茶什么季节喝好| 口舌是非是什么意思| 农历六月十九是什么日子| gia是什么意思| 女人来月经有血块是什么原因| 黑舌头的狗是什么狗| 痴汉是什么意思| 联通查流量发什么短信| 小脑的功能是什么| 首发是什么意思| 对付是什么意思| 玄牝是什么意思| 大口什么字| 龙飞凤舞是什么意思| 一龙一什么填十二生肖| 家里狗死了预示着什么| 专科医院是什么意思| 为什么要小心AB型血的人| 杀鸡给猴看什么意思| 借你吉言是什么意思| 什么水果补血| 为什么射出的精子里有淡红色| 活菩萨是什么意思| 湿疹是什么引起的| 什么地走| 山丘是什么意思| 乙肝两对半25阳性是什么意思| 睾丸为什么会痛| 股骨长径是指胎儿什么| robinhood是什么牌子| 蛇缠身是什么病| 退位让贤是什么意思| 昊字五行属什么| 鳞状上皮是什么意思| 清朝为什么会灭亡| 胆囊炎吃什么中成药| rp是什么| 乙肝两对半245阳性是什么意思| 备孕为什么要吃叶酸| 什么样的葡萄| 补锌吃什么药| 杨梅不能和什么一起吃| 疙瘩是什么意思| 心烦意乱是什么意思| 腿上有白点是什么原因| 两个月没有来月经了是什么原因| 每天吃鸡蛋有什么好处和坏处| 卫生湿巾是干什么用的| 头疼检查什么项目| 羊水栓塞是什么意思| 肿瘤患者吃什么药可以抑制肿瘤| 大小三阳是什么病| 百度Jump to content

烈士纪念日,让我们致敬禁毒英雄!纪录片《中国缉毒警》隆重推出!

From Wikipedia, the free encyclopedia
(Redirected from Even and odd numbers)
Cuisenaire rods: 5 (yellow) cannot be evenly divided in 2 (red) by any 2 rods of the same color/length, while 6 (dark green) can be evenly divided in 2 by 3 (lime green).
百度 颈肩部饰褐色乳钉,乳钉下饰柳斗纹。

In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.[1] For example, ?4, 0, and 82 are even numbers, while ?3, 5, 23, and 69 are odd numbers.

The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers with decimals or fractions like 1/2 or 4.6978. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings.

Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even.[2] Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as the last digit of any even number is 0, 2, 4, 6, or 8. The same idea will work using any even base. In particular, a number expressed in the binary numeral system is odd if its last digit is 1; and it is even if its last digit is 0. In an odd base, the number is even according to the sum of its digits—it is even if and only if the sum of its digits is even.[3]

Definition

[edit]

An even number is an integer of the form where k is an integer;[4] an odd number is an integer of the form

An equivalent definition is that an even number is divisible by 2: and an odd number is not:

The sets of even and odd numbers can be defined as following:[5]

The set of even numbers is a prime ideal of and the quotient ring is the field with two elements. Parity can then be defined as the unique ring homomorphism from to where odd numbers are 1 and even numbers are 0. The consequences of this homomorphism are covered below.

Properties

[edit]

The following laws can be verified using the properties of divisibility. They are a special case of rules in modular arithmetic, and are commonly used to check if an equality is likely to be correct by testing the parity of each side. As with ordinary arithmetic, multiplication and addition are commutative and associative in modulo 2 arithmetic, and multiplication is distributive over addition. However, subtraction in modulo 2 is identical to addition, so subtraction also possesses these properties, which is not true for normal integer arithmetic.

Addition and subtraction

[edit]
  • even ± even = even;[1]
  • even ± odd = odd;
  • odd ± odd = even;

Multiplication

[edit]
  • even × even = even;
  • even × odd = even;
  • odd × odd = odd.

By construction in the previous section, the structure ({even, odd}, +, ×) is in fact the field with two elements.

Division

[edit]

The division of two whole numbers does not necessarily result in a whole number. For example, 1 divided by 4 equals 1/4, which is neither even nor odd, since the concepts of even and odd apply only to integers. But when the quotient is an integer, it will be even if and only if the dividend has more factors of two than the divisor.[6]

History

[edit]

The ancient Greeks considered 1, the monad, to be neither fully odd nor fully even.[7] Some of this sentiment survived into the 19th century: Friedrich Wilhelm August Fr?bel's 1826 The Education of Man instructs the teacher to drill students with the claim that 1 is neither even nor odd, to which Fr?bel attaches the philosophical afterthought,

It is well to direct the pupil's attention here at once to a great far-reaching law of nature and of thought. It is this, that between two relatively different things or ideas there stands always a third, in a sort of balance, seeming to unite the two. Thus, there is here between odd and even numbers one number (one) which is neither of the two. Similarly, in form, the right angle stands between the acute and obtuse angles; and in language, the semi-vowels or aspirants between the mutes and vowels. A thoughtful teacher and a pupil taught to think for himself can scarcely help noticing this and other important laws.[8]

Higher mathematics

[edit]

Higher dimensions and more general classes of numbers

[edit]
abcdefgh
8
c8 black cross
e8 black cross
b7 black cross
f7 black cross
d6 black knight
b5 black cross
f5 black cross
c4 black cross
e4 black cross
c1 white bishop
f1 white bishop
8
77
66
55
44
33
22
11
abcdefgh
Each of the white bishops is confined to squares of the same parity; the black knight can only jump to squares of alternating parity.

Integer coordinates of points in Euclidean spaces of two or more dimensions also have a parity, usually defined as the parity of the sum of the coordinates. For instance, the face-centered cubic lattice and its higher-dimensional generalizations (the Dn lattices) consist of all of the integer points whose coordinates have an even sum.[9] This feature also manifests itself in chess, where the parity of a square is indicated by its color: bishops are constrained to moving between squares of the same parity, whereas knights alternate parity between moves.[10] This form of parity was famously used to solve the mutilated chessboard problem: if two opposite corner squares are removed from a chessboard, then the remaining board cannot be covered by dominoes, because each domino covers one square of each parity and there are two more squares of one parity than of the other.[11]

The parity of an ordinal number may be defined to be even if the number is a limit ordinal, or a limit ordinal plus a finite even number, and odd otherwise.[12]

Let R be a commutative ring and let I be an ideal of R whose index is 2. Elements of the coset may be called even, while elements of the coset may be called odd. As an example, let R = Z(2) be the localization of Z at the prime ideal (2). Then an element of R is even or odd if and only if its numerator is so in Z.

Number theory

[edit]

The even numbers form an ideal in the ring of integers,[13] but the odd numbers do not—this is clear from the fact that the identity element for addition, zero, is an element of the even numbers only. An integer is even if it is congruent to 0 modulo this ideal, in other words if it is congruent to 0 modulo 2, and odd if it is congruent to 1 modulo 2.

All prime numbers are odd, with one exception: the prime number 2.[14] All known perfect numbers are even; it is unknown whether any odd perfect numbers exist.[15]

Goldbach's conjecture states that every even integer greater than 2 can be represented as a sum of two prime numbers. Modern computer calculations have shown this conjecture to be true for integers up to at least 4 × 1018, but still no general proof has been found.[16]

Group theory

[edit]
Rubik's Revenge in solved state

The parity of a permutation (as defined in abstract algebra) is the parity of the number of transpositions into which the permutation can be decomposed.[17] For example (ABC) to (BCA) is even because it can be done by swapping A and B then C and A (two transpositions). It can be shown that no permutation can be decomposed both in an even and in an odd number of transpositions. Hence the above is a suitable definition. In Rubik's Cube, Megaminx, and other twisting puzzles, the moves of the puzzle allow only even permutations of the puzzle pieces, so parity is important in understanding the configuration space of these puzzles.[18]

The Feit–Thompson theorem states that a finite group is always solvable if its order is an odd number. This is an example of odd numbers playing a role in an advanced mathematical theorem where the method of application of the simple hypothesis of "odd order" is far from obvious.[19]

Analysis

[edit]

The parity of a function describes how its values change when its arguments are exchanged with their negations. An even function, such as an even power of a variable, gives the same result for any argument as for its negation. An odd function, such as an odd power of a variable, gives for any argument the negation of its result when given the negation of that argument. It is possible for a function to be neither odd nor even, and for the case f(x) = 0, to be both odd and even.[20] The Taylor series of an even function contains only terms whose exponent is an even number, and the Taylor series of an odd function contains only terms whose exponent is an odd number.[21]

Combinatorial game theory

[edit]

In combinatorial game theory, an evil number is a number that has an even number of 1's in its binary representation, and an odious number is a number that has an odd number of 1's in its binary representation; these numbers play an important role in the strategy for the game Kayles.[22] The parity function maps a number to the number of 1's in its binary representation, modulo 2, so its value is zero for evil numbers and one for odious numbers. The Thue–Morse sequence, an infinite sequence of 0's and 1's, has a 0 in position i when i is evil, and a 1 in that position when i is odious.[23]

Additional applications

[edit]

In information theory, a parity bit appended to a binary number provides the simplest form of error detecting code. If a single bit in the resulting value is changed, then it will no longer have the correct parity: changing a bit in the original number gives it a different parity than the recorded one, and changing the parity bit while not changing the number it was derived from again produces an incorrect result. In this way, all single-bit transmission errors may be reliably detected.[24] Some more sophisticated error detecting codes are also based on the use of multiple parity bits for subsets of the bits of the original encoded value.[25]

In wind instruments with a cylindrical bore and in effect closed at one end, such as the clarinet at the mouthpiece, the harmonics produced are odd multiples of the fundamental frequency. (With cylindrical pipes open at both ends, used for example in some organ stops such as the open diapason, the harmonics are even multiples of the same frequency for the given bore length, but this has the effect of the fundamental frequency being doubled and all multiples of this fundamental frequency being produced.) See harmonic series (music).[26]

In some countries, house numberings are chosen so that the houses on one side of a street have even numbers and the houses on the other side have odd numbers.[27] Similarly, among United States numbered highways, even numbers primarily indicate east–west highways while odd numbers primarily indicate north–south highways.[28] Among airline flight numbers, even numbers typically identify eastbound or northbound flights, and odd numbers typically identify westbound or southbound flights.[29]

See also

[edit]

References

[edit]
  1. ^ a b Vijaya, A.V.; Rodriguez, Dora, Figuring Out Mathematics, Pearson Education India, pp. 20–21, ISBN 9788131703571.
  2. ^ Bóna, Miklós (2011), A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory, World Scientific, p. 178, ISBN 9789814335232.
  3. ^ Owen, Ruth L. (1992), "Divisibility in bases" (PDF), The Pentagon: A Mathematics Magazine for Students, 51 (2): 17–20, archived from the original (PDF) on 2025-08-05.
  4. ^ Bassarear, Tom (2010), Mathematics for Elementary School Teachers, Cengage Learning, p. 198, ISBN 9780840054630.
  5. ^ Sidebotham, Thomas H. (2003), The A to Z of Mathematics: A Basic Guide, John Wiley & Sons, p. 181, ISBN 9780471461630.
  6. ^ Pólya, George; Tarjan, Robert E.; Woods, Donald R. (2009), Notes on Introductory Combinatorics, Springer, pp. 21–22, ISBN 9780817649524.
  7. ^ Tankha (2006), Ancient Greek Philosophy: Thales to Gorgias, Pearson Education India, p. 126, ISBN 9788177589399.
  8. ^ Froebel, Friedrich (1885), The Education of Man, translated by Jarvis, Josephine, New York: A Lovell & Company, pp. 240
  9. ^ Conway, J. H.; Sloane, N. J. A. (1999), Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290 (3rd ed.), New York: Springer-Verlag, p. 10, ISBN 978-0-387-98585-5, MR 1662447.
  10. ^ Pandolfini, Bruce (1995), Chess Thinking: The Visual Dictionary of Chess Moves, Rules, Strategies and Concepts, Simon and Schuster, pp. 273–274, ISBN 9780671795023.
  11. ^ Mendelsohn, N. S. (2004), "Tiling with dominoes", The College Mathematics Journal, 35 (2): 115–120, doi:10.2307/4146865, JSTOR 4146865.
  12. ^ Bruckner, Andrew M.; Bruckner, Judith B.; Thomson, Brian S. (1997), Real Analysis, ClassicalRealAnalysis.com, p. 37, ISBN 978-0-13-458886-5.
  13. ^ Stillwell, John (2003), Elements of Number Theory, Springer, p. 199, ISBN 9780387955872.
  14. ^ Lial, Margaret L.; Salzman, Stanley A.; Hestwood, Diana (2005), Basic College Mathematics (7th ed.), Addison Wesley, p. 128, ISBN 9780321257802.
  15. ^ Dudley, Underwood (1992), "Perfect numbers", Mathematical Cranks, MAA Spectrum, Cambridge University Press, pp. 242–244, ISBN 9780883855072.
  16. ^ Oliveira e Silva, Tomás; Herzog, Siegfried; Pardi, Silvio (2013), "Empirical verification of the even Goldbach conjecture, and computation of prime gaps, up to 4·1018" (PDF), Mathematics of Computation, 83 (288): 2033–2060, doi:10.1090/s0025-5718-2013-02787-1. In press.
  17. ^ Cameron, Peter J. (1999), Permutation Groups, London Mathematical Society Student Texts, vol. 45, Cambridge University Press, pp. 26–27, ISBN 9780521653787.
  18. ^ Joyner, David (2008), "13.1.2 Parity conditions", Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys, JHU Press, pp. 252–253, ISBN 9780801897269.
  19. ^ Bender, Helmut; Glauberman, George (1994), Local analysis for the odd order theorem, London Mathematical Society Lecture Note Series, vol. 188, Cambridge: Cambridge University Press, ISBN 978-0-521-45716-3, MR 1311244; Peterfalvi, Thomas (2000), Character theory for the odd order theorem, London Mathematical Society Lecture Note Series, vol. 272, Cambridge: Cambridge University Press, ISBN 978-0-521-64660-4, MR 1747393.
  20. ^ Gustafson, Roy David; Hughes, Jeffrey D. (2012), College Algebra (11th ed.), Cengage Learning, p. 315, ISBN 9781111990909.
  21. ^ Jain, R. K.; Iyengar, S. R. K. (2007), Advanced Engineering Mathematics, Alpha Science Int'l Ltd., p. 853, ISBN 9781842651858.
  22. ^ Guy, Richard K. (1996), "Impartial games", Games of no chance (Berkeley, CA, 1994), Math. Sci. Res. Inst. Publ., vol. 29, Cambridge: Cambridge Univ. Press, pp. 61–78, MR 1427957. See in particular p. 68.
  23. ^ Bernhardt, Chris (2009), "Evil twins alternate with odious twins" (PDF), Mathematics Magazine, 82 (1): 57–62, doi:10.4169/193009809x469084, JSTOR 27643161.
  24. ^ Moser, Stefan M.; Chen, Po-Ning (2012), A Student's Guide to Coding and Information Theory, Cambridge University Press, pp. 19–20, ISBN 9781107015838.
  25. ^ Berrou, Claude (2011), Codes and turbo codes, Springer, p. 4, ISBN 9782817800394.
  26. ^ Randall, Robert H. (2005), An Introduction to Acoustics, Dover, p. 181, ISBN 9780486442518.
  27. ^ Cromley, Ellen K.; McLafferty, Sara L. (2011), GIS and Public Health (2nd ed.), Guilford Press, p. 100, ISBN 9781462500628.
  28. ^ Swift, Earl (2011), The Big Roads: The Untold Story of the Engineers, Visionaries, and Trailblazers Who Created the American Superhighways, Houghton Mifflin Harcourt, p. 95, ISBN 9780547549132.
  29. ^ Lauer, Chris (2010), Southwest Airlines, Corporations that changed the world, ABC-CLIO, p. 90, ISBN 9780313378638.
ca是什么元素 一个火一个斤念什么 西地那非有什么副作用 吃什么让月经量增多 定情信物是什么意思
茶叶杀青是什么意思 为什么胃有灼热感 低级别上皮内瘤变是什么意思 主任是什么意思 如来佛祖和释迦牟尼是什么关系
衣原体感染是什么病 吃不胖是什么原因 为什么男人喜欢吃槟榔 扁桃体作用是什么 crs是什么意思
白塞氏是一种什么病 肝内小钙化灶是什么意思 宫颈鳞状上皮增生是什么意思 10月份什么星座 卢森堡为什么那么有钱
什么是电解质水hcv8jop0ns0r.cn 虾皮是什么hcv7jop7ns3r.cn 为什么拉的屎是黑色的hcv8jop3ns6r.cn 姓林的女孩取什么名字好hcv7jop7ns3r.cn 精索炎吃什么药最好beikeqingting.com
宫腔粘连带是什么意思hcv7jop9ns3r.cn 内参是什么意思hcv7jop6ns7r.cn 脂溢性脱发用什么洗发水jasonfriends.com 小孩瘦小不长肉是什么原因hcv9jop6ns4r.cn 脉压差大是什么原因hcv9jop1ns5r.cn
什么手机拍照好看bfb118.com 一鸣惊人指什么生肖hcv9jop4ns9r.cn 拉屎黑色的是什么原因hcv8jop9ns5r.cn 骨密度是什么意思hcv8jop6ns8r.cn 尿发黄什么原因hcv9jop2ns8r.cn
大腿外侧是什么经络hcv8jop9ns3r.cn 气质是什么hcv8jop8ns9r.cn 金钱龟吃什么食物imcecn.com 为什么会心肌缺血hcv8jop9ns0r.cn 产值是什么gysmod.com
百度