黑色裤子配什么颜色t恤| 动物为什么要冬眠| 光滑念珠菌是什么意思| 垒是什么意思| 绿豆芽不能和什么一起吃| 芳菲的意思是什么| 六月六日是什么星座| 雅五行属什么| 法尔如是是什么意思| 疱疹性咽峡炎吃什么药| 嗓子哑吃什么药| 葛根和什么搭配泡水好| 7点至9点是什么时辰| 耳鼻喉科主要看什么病| 血窦是什么意思| 六月十一是什么星座| 恙虫是什么虫| 慈禧和溥仪是什么关系| 嗜血综合症是什么病| 错位是什么意思| 西瓜为什么是红色的| 电器着火用什么灭火器| nt什么货币| chihiro是什么意思| 煎中药用什么锅| 班门弄斧是什么意思| 脚底发麻是什么原因| 踢皮球是什么意思| 警示是什么意思| 71年属什么生肖| 女性睾酮低意味着什么| 子宫彩超能检查出什么| 雪莲菌泡牛奶有什么功效| 撸什么意思| bnp是什么检查| 宫颈管分离是什么意思| 开封古代叫什么| 888红包代表什么意思| 子婴是秦始皇什么人| 梦见狗咬人是什么预兆| 肺炎支原体抗体阴性是什么意思| 夫妻合葬有什么讲究| 起司是什么| 13太保是什么意思| hlh是什么病| 门户网站是什么| 腰疼是什么原因引起的| 风热感冒 吃什么| 淋巴结炎挂什么科| 尿酸高不能吃什么东西| 张五行属性是什么| 大便出血是什么原因引起的| 怎么知道自己五行缺什么| 本是什么意思| bishop是什么意思| 陶氏腔积液是什么意思| 1977年五行属什么| 阴阳二气是什么意思| 分诊是什么意思| 属牛的和什么属相最配| 吉数是什么数字| 净身高是什么意思| 希鲮鱼是什么鱼| 转网是什么意思| 拔牙后吃什么食物最好| 痰湿吃什么药| 盆腔积液是什么引起的| 子宫肌瘤是什么引起的| 十全十美指什么生肖| 小刺猬吃什么东西| 擦枪走火什么意思| 什么王| 神采什么什么| 196是什么意思| 护手霜什么牌子的效果好| s和m是什么意思啊| 红米有什么功效和作用| 小鸭子吃什么食物| 僧侣是什么意思| 管科是什么专业| 又什么又什么的什么| 开业送什么礼物好| 荨麻疹挂什么科| 黑枸杞和什么一起泡水喝比较好| 虫草花是什么| 金蝉子是什么佛| 大蒜泡酒治什么病| 拈花一笑什么意思| 什么东西能吃不能碰| 灵芝是什么| 邪是什么意思| 中指麻木是什么原因引起的| 卵巢畸胎瘤是什么病| 女性尿酸高有什么症状表现| 琼玖是什么意思| 角膜炎用什么眼药水| 灵芝搭配什么煲汤最好| 蝙蝠长什么样| 吃饭掉筷子有什么预兆| 大好河山是什么生肖| 护理和护士有什么区别| 海茸是什么东西| 恭请是什么意思| 为什么会得腱鞘炎| 崩溃是什么意思| 潘海利根香水什么档次| 山药叶子长什么样图片| 上房是什么意思| 乳钉的作用是什么| 血糖低是什么原因引起的| 剑桥英语和新概念英语有什么区别| 范字五行属什么| 东西是什么意思| 小米叫什么| 黄体是什么意思| 黄帝内经讲的什么| 新疆是什么地貌| 决明子有什么作用| 香槟酒属于什么酒| 钾低是什么原因| 头响脑鸣是什么原因引起的| 玄胡又叫什么| 朱元璋什么星座| 美国的国宝是什么动物| 行号是什么| 查乙肝挂什么科| 吃什么生血快| 阳盛阴衰是什么意思| 三个羊念什么| 粉底液和bb霜有什么区别| 膝盖肿胀是什么原因| 宛如是什么意思| 为什么空腹喝牛奶会拉肚子| 吃什么能变胖| 纳差什么意思| 燕窝有什么营养价值| 清肺热用什么泡水喝比较好| 给女生送礼物送什么好| py交易是什么意思| 外贸是什么| mm是什么病| 梅花像什么| 五行海中金是什么意思| 早餐吃什么最有营养又减肥| 养阴生津是什么意思| 黄原胶是什么| 肾怕什么| 炎症是什么病| 肚子疼吃什么药管用| 创伤急救的原则是什么| 送终是什么意思| 发糕是什么做的| 驴打滚是什么| 中国最大的海是什么海| 额头爱出汗是什么原因| 骨质增生什么意思| 脚踝疼挂什么科| 发烧呕吐吃什么药| 甲醇对人体有什么伤害| 马弁是什么意思| 什么大什么粗| 活力是什么意思| 什么蔬菜| 苦海翻起爱恨是什么歌| 什么原因导致缺钾| 宫口开了有什么症状| 虚岁30岁属什么生肖| 木耳和什么菜搭配好吃| 闲鱼卖出的东西钱什么时候到账| 梨花是什么颜色的| 胎方位roa是什么意思| 青少年流鼻血是什么原因引起的| 偶发室性早搏什么意思| 总胆红素偏高是什么病| 什么止疼药见效最快| 三月三日是什么星座| 什么情况下需要做心脏支架| 戴银镯子对身体有什么好处| 三头六臂是什么意思| 维生素ad和维生素d有什么区别| 冬瓜和什么不能一起吃| 梦见很多苍蝇是什么意思| 阖闾和夫差是什么关系| 中央电视台台长是什么级别| 陪跑什么意思| 过桥米线为什么叫过桥| tia是什么病| 去医院洗纹身挂什么科| 吃什么抗衰老| 美国为什么打伊朗| 女性失眠吃什么药最好| 肠癌吃什么| 什么死法不痛苦| 岫玉是什么玉| 贾蓉和王熙凤是什么关系| 掉头发挂什么科| 什么的糖果| 120是什么意思| 1978年属什么的| 煞是什么意思| 耐药是什么意思| 得了甲亢都有什么症状| 二倍体是什么意思| 农历十月份是什么星座| 干咳吃什么药止咳效果好| 藿香正气水有什么功效| 四月十八是什么星座| 屋尘螨是什么东西| 柠檬泡水有什么好处| 小孩上火吃什么药| 卿卿是什么意思| 外耳道湿疹用什么药| 不屑一顾的意思是什么| 拔罐颜色紫黑代表什么| 外阴有白色的东西是什么| ft什么意思| 孔雀吃什么食物| 南瓜子吃多了有什么副作用| 奇亚籽有什么功效| 四个金读什么| 疣是什么原因造成的| 梦见自己流产了是什么征兆| 口若悬什么| 11月30号什么星座| 梦见狼是什么意思周公解梦| 肚子一直咕咕叫是什么原因| 脚痛是什么原因| 什么大牌护肤品好用| 凿壁偷光告诉我们什么道理| 什么是粗粮食物有哪些| 眼屎多用什么眼药水| 装修都包括什么| 女人三十如狼四十如虎什么意思| 熬中药用什么锅好| 绣球花什么时候开花| 为什么喝咖啡会心慌| 幻听是什么原因引起的| 世界八大奇迹是什么| 咳嗽能吃什么水果| 甲状腺囊实性结节是什么意思| 卢字五行属什么| 什么是健康证| 夏天白鸽煲什么汤最好| 先兆性流产是什么症状| ykk是什么牌子| 心脏五行属什么| 偶是什么意思| 8月29是什么星座| 荒芜是什么意思| 前胸疼是什么原因| 绿色和红色混合是什么颜色| 蝴蝶花长什么样| 冬至为什么吃水饺| 中老年人吃什么钙片好| 什么是b站| 白细胞中性粒细胞高是什么原因| 烦躁是什么原因| 网球肘用什么膏药效果好| 甲状腺球蛋白抗体低说明什么| 梦见打死黄鼠狼是什么意思| 疣是什么病| 甘油三酯指什么| 肾病挂什么科| 蜈蚣是什么生肖| 百度Jump to content

多元化调解机制促进社会和谐稳定

From Wikipedia, the free encyclopedia
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12.
百度 张瑞书表示,未来几年内,秦皇岛市与京津冀多个城市之间的联络会越来越密集,交通也会越来越方便。

In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.

A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in 7 + 8 = 15, but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is congruent to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12).

Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This can be written as 2 × 8 ≡ 4 (mod 12). Note that after a wait of exactly 12 hours, the hour hand will always be right where it was before, so 12 acts the same as zero, thus 12 ≡ 0 (mod 12).

Congruence

[edit]

Given an integer m ≥ 1, called a modulus, two integers a and b are said to be congruent modulo m, if m is a divisor of their difference; that is, if there is an integer k such that

a ? b = k m.

Congruence modulo m is a congruence relation, meaning that it is an equivalence relation that is compatible with addition, subtraction, and multiplication. Congruence modulo m is denoted by

ab (mod m).

The parentheses mean that (mod m) applies to the entire equation, not just to the right-hand side (here, b).

This notation is not to be confused with the notation b mod m (without parentheses), which refers to the remainder of b when divided by m, known as the modulo operation: that is, b mod m denotes the unique integer r such that 0 ≤ r < m and rb (mod m).

The congruence relation may be rewritten as

a = k m + b,

explicitly showing its relationship with Euclidean division. However, the b here need not be the remainder in the division of a by m. Rather, ab (mod m) asserts that a and b have the same remainder when divided by m. That is,

a = p m + r,
b = q m + r,

where 0 ≤ r < m is the common remainder. We recover the previous relation (a ? b = k m) by subtracting these two expressions and setting k = p ? q.

Because the congruence modulo m is defined by the divisibility by m and because ?1 is a unit in the ring of integers, a number is divisible by ?m exactly if it is divisible by m. This means that every non-zero integer m may be taken as modulus.

Examples

[edit]

In modulus 12, one can assert that:

38 ≡ 14 (mod 12)

because the difference is 38 ? 14 = 24 = 2 × 12, a multiple of 12. Equivalently, 38 and 14 have the same remainder 2 when divided by 12.

The definition of congruence also applies to negative values. For example:

Basic properties

[edit]

The congruence relation satisfies all the conditions of an equivalence relation:

  • Reflexivity: aa (mod m)
  • Symmetry: ab (mod m) if ba (mod m).
  • Transitivity: If ab (mod m) and bc (mod m), then ac (mod m)

If a1b1 (mod m) and a2b2 (mod m), or if ab (mod m), then:[1]

  • a + kb + k (mod m) for any integer k (compatibility with translation)
  • k ak b (mod m) for any integer k (compatibility with scaling)
  • k ak b (mod k m) for any integer k
  • a1 + a2b1 + b2 (mod m) (compatibility with addition)
  • a1 ? a2b1 ? b2 (mod m) (compatibility with subtraction)
  • a1 a2b1 b2 (mod m) (compatibility with multiplication)
  • akbk (mod m) for any non-negative integer k (compatibility with exponentiation)
  • p(a) ≡ p(b) (mod m), for any polynomial p(x) with integer coefficients (compatibility with polynomial evaluation)

If ab (mod m), then it is generally false that kakb (mod m). However, the following is true:

For cancellation of common terms, we have the following rules:

  • If a + kb + k (mod m), where k is any integer, then ab (mod m).
  • If k ak b (mod m) and k is coprime with m, then ab (mod m).
  • If k ak b (mod k m) and k ≠ 0, then ab (mod m).

The last rule can be used to move modular arithmetic into division. If b divides a, then (a/b) mod m = (a mod b m) / b.

The modular multiplicative inverse is defined by the following rules:

  • Existence: There exists an integer denoted a?1 such that aa?1 ≡ 1 (mod m) if and only if a is coprime with m. This integer a?1 is called a modular multiplicative inverse of a modulo m.
  • If ab (mod m) and a?1 exists, then a?1b?1 (mod m) (compatibility with multiplicative inverse, and, if a = b, uniqueness modulo m).
  • If axb (mod m) and a is coprime to m, then the solution to this linear congruence is given by xa?1b (mod m).

The multiplicative inverse xa?1 (mod m) may be efficiently computed by solving Bézout's equation a x + m y = 1 for x, y, by using the Extended Euclidean algorithm.

In particular, if p is a prime number, then a is coprime with p for every a such that 0 < a < p; thus a multiplicative inverse exists for all a that is not congruent to zero modulo p.

Advanced properties

[edit]

Some of the more advanced properties of congruence relations are the following:

  • Fermat's little theorem: If p is prime and does not divide a, then ap?1 ≡ 1 (mod p).
  • Euler's theorem: If a and m are coprime, then aφ(m) ≡ 1 (mod m), where φ is Euler's totient function.
  • A simple consequence of Fermat's little theorem is that if p is prime, then a?1ap?2 (mod p) is the multiplicative inverse of 0 < a < p. More generally, from Euler's theorem, if a and m are coprime, then a?1aφ(m)?1 (mod m). Hence, if ax1 (mod m), then xaφ(m)?1 (mod m).
  • Another simple consequence is that if ab (mod φ(m)), where φ is Euler's totient function, then kakb (mod m) provided k is coprime with m.
  • Wilson's theorem: p is prime if and only if (p ? 1)! ≡ ?1 (mod p).
  • Chinese remainder theorem: For any a, b and coprime m, n, there exists a unique x (mod mn) such that xa (mod m) and xb (mod n). In fact, xb mn?1 m + a nm?1 n (mod mn) where mn?1 is the inverse of m modulo n and nm?1 is the inverse of n modulo m.
  • Lagrange's theorem: If p is prime and f (x) = a0 xd + ... + ad is a polynomial with integer coefficients such that p is not a divisor of a0, then the congruence f (x) ≡ 0 (mod p) has at most d non-congruent solutions.
  • Primitive root modulo m: A number g is a primitive root modulo m if, for every integer a coprime to m, there is an integer k such that gka (mod m). A primitive root modulo m exists if and only if m is equal to 2, 4, pk or 2pk, where p is an odd prime number and k is a positive integer. If a primitive root modulo m exists, then there are exactly φ(φ(m)) such primitive roots, where φ is the Euler's totient function.
  • Quadratic residue: An integer a is a quadratic residue modulo m, if there exists an integer x such that x2a (mod m). Euler's criterion asserts that, if p is an odd prime, and a is not a multiple of p, then a is a quadratic residue modulo p if and only if
    a(p?1)/2 ≡ 1 (mod p).

Congruence classes

[edit]

The congruence relation is an equivalence relation. The equivalence class modulo m of an integer a is the set of all integers of the form a + k m, where k is any integer. It is called the congruence class or residue class of a modulo m, and may be denoted (a mod m), or as a or [a] when the modulus m is known from the context.

Each residue class modulo m contains exactly one integer in the range . Thus, these integers are representatives of their respective residue classes.

It is generally easier to work with integers than sets of integers; that is, the representatives most often considered, rather than their residue classes.

Consequently, (a mod m) denotes generally the unique integer r such that 0 ≤ r < m and ra (mod m); it is called the residue of a modulo m.

In particular, (a mod m) = (b mod m) is equivalent to ab (mod m), and this explains why "=" is often used instead of "" in this context.

Residue systems

[edit]

Each residue class modulo m may be represented by any one of its members, although we usually represent each residue class by the smallest nonnegative integer which belongs to that class[2] (since this is the proper remainder which results from division). Any two members of different residue classes modulo m are incongruent modulo m. Furthermore, every integer belongs to one and only one residue class modulo m.[3]

The set of integers {0, 1, 2, ..., m ? 1} is called the least residue system modulo m. Any set of m integers, no two of which are congruent modulo m, is called a complete residue system modulo m.

The least residue system is a complete residue system, and a complete residue system is simply a set containing precisely one representative of each residue class modulo m.[4] For example, the least residue system modulo 4 is {0, 1, 2, 3}. Some other complete residue systems modulo 4 include:

  • {1, 2, 3, 4}
  • {13, 14, 15, 16}
  • {?2, ?1, 0, 1}
  • {?13, 4, 17, 18}
  • {?5, 0, 6, 21}
  • {27, 32, 37, 42}

Some sets that are not complete residue systems modulo 4 are:

  • {?5, 0, 6, 22}, since 6 is congruent to 22 modulo 4.
  • {5, 15}, since a complete residue system modulo 4 must have exactly 4 incongruent residue classes.

Reduced residue systems

[edit]

Given the Euler's totient function φ(m), any set of φ(m) integers that are relatively prime to m and mutually incongruent under modulus m is called a reduced residue system modulo m.[5] The set {5, 15} from above, for example, is an instance of a reduced residue system modulo 4.

Covering systems

[edit]

Covering systems represent yet another type of residue system that may contain residues with varying moduli.

Integers modulo m

[edit]

In the context of this paragraph, the modulus m is almost always taken as positive.

The set of all congruence classes modulo m is a ring called the ring of integers modulo m, and is denoted , , or .[6] The ring is fundamental to various branches of mathematics (see § Applications below). (In some parts of number theory the notation is avoided because it can be confused with the set of m-adic integers.)

For m > 0 one has

When m = 1, is the zero ring; when m = 0, is not an empty set; rather, it is isomorphic to , since a0 = {a}.

Addition, subtraction, and multiplication are defined on by the following rules:

The properties given before imply that, with these operations, is a commutative ring. For example, in the ring , one has

as in the arithmetic for the 24-hour clock.

The notation is used because this ring is the quotient ring of by the ideal , the set formed by all multiples of m, i.e., all numbers k m with

Under addition, is a cyclic group. All finite cyclic groups are isomorphic with for some m.[7]

The ring of integers modulo m is a field, i.e., every nonzero element has a multiplicative inverse, if and only if m is prime. If m = pk is a prime power with k > 1, there exists a unique (up to isomorphism) finite field with m elements, which is not isomorphic to , which fails to be a field because it has zero-divisors.

If m > 1, denotes the multiplicative group of the integers modulo m that are invertible. It consists of the congruence classes am, where a is coprime to m; these are precisely the classes possessing a multiplicative inverse. They form an abelian group under multiplication; its order is φ(m), where φ is Euler's totient function.

Applications

[edit]

In pure mathematics, modular arithmetic is one of the foundations of number theory, touching on almost every aspect of its study, and it is also used extensively in group theory, ring theory, knot theory, and abstract algebra. In applied mathematics, it is used in computer algebra, cryptography, computer science, chemistry and the visual and musical arts.

A very practical application is to calculate checksums within serial number identifiers. For example, International Standard Book Number (ISBN) uses modulo 11 (for 10-digit ISBN) or modulo 10 (for 13-digit ISBN) arithmetic for error detection. Likewise, International Bank Account Numbers (IBANs) use modulo 97 arithmetic to spot user input errors in bank account numbers. In chemistry, the last digit of the CAS registry number (a unique identifying number for each chemical compound) is a check digit, which is calculated by taking the last digit of the first two parts of the CAS registry number times 1, the previous digit times 2, the previous digit times 3 etc., adding all these up and computing the sum modulo 10.

In cryptography, modular arithmetic directly underpins public key systems such as RSA and Diffie–Hellman, and provides finite fields which underlie elliptic curves, and is used in a variety of symmetric key algorithms including Advanced Encryption Standard (AES), International Data Encryption Algorithm (IDEA), and RC4. RSA and Diffie–Hellman use modular exponentiation.

In computer algebra, modular arithmetic is commonly used to limit the size of integer coefficients in intermediate calculations and data. It is used in polynomial factorization, a problem for which all known efficient algorithms use modular arithmetic. It is used by the most efficient implementations of polynomial greatest common divisor, exact linear algebra and Gr?bner basis algorithms over the integers and the rational numbers. As posted on Fidonet in the 1980s and archived at Rosetta Code, modular arithmetic was used to disprove Euler's sum of powers conjecture on a Sinclair QL microcomputer using just one-fourth of the integer precision used by a CDC 6600 supercomputer to disprove it two decades earlier via a brute force search.[8]

In computer science, modular arithmetic is often applied in bitwise operations and other operations involving fixed-width, cyclic data structures. The modulo operation, as implemented in many programming languages and calculators, is an application of modular arithmetic that is often used in this context. The logical operator XOR sums 2 bits, modulo 2.

The use of long division to turn a fraction into a repeating decimal in any base b is equivalent to modular multiplication of b modulo the denominator. For example, for decimal, b = 10.

In music, arithmetic modulo 12 is used in the consideration of the system of twelve-tone equal temperament, where octave and enharmonic equivalency occurs (that is, pitches in a 1:2 or 2:1 ratio are equivalent, and C-sharp is considered the same as D-flat).

The method of casting out nines offers a quick check of decimal arithmetic computations performed by hand. It is based on modular arithmetic modulo 9, and specifically on the crucial property that 10 ≡ 1 (mod 9).

Arithmetic modulo 7 is used in algorithms that determine the day of the week for a given date. In particular, Zeller's congruence and the Doomsday algorithm make heavy use of modulo-7 arithmetic.

More generally, modular arithmetic also has application in disciplines such as law (e.g., apportionment), economics (e.g., game theory) and other areas of the social sciences, where proportional division and allocation of resources plays a central part of the analysis.

Computational complexity

[edit]

Since modular arithmetic has such a wide range of applications, it is important to know how hard it is to solve a system of congruences. A linear system of congruences can be solved in polynomial time with a form of Gaussian elimination, for details see linear congruence theorem. Algorithms, such as Montgomery reduction, also exist to allow simple arithmetic operations, such as multiplication and exponentiation modulo m, to be performed efficiently on large numbers.

Some operations, like finding a discrete logarithm or a quadratic congruence appear to be as hard as integer factorization and thus are a starting point for cryptographic algorithms and encryption. These problems might be NP-intermediate.

Solving a system of non-linear modular arithmetic equations is NP-complete.[9]

See also

[edit]

Notes

[edit]
  1. ^ Sandor Lehoczky; Richard Rusczky (2006). David Patrick (ed.). the Art of Problem Solving. Vol. 1 (7 ed.). AoPS Incorporated. p. 44. ISBN 0977304566.
  2. ^ Weisstein, Eric W. "Modular Arithmetic". Wolfram MathWorld. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  3. ^ Pettofrezzo & Byrkit (1970, p. 90)
  4. ^ Long (1972, p. 78)
  5. ^ Long (1972, p. 85)
  6. ^ "2.3: Integers Modulo n". Mathematics LibreTexts. 2025-08-06. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  7. ^ Sengadir T., Discrete Mathematics and Combinatorics, p. 293, at Google Books
  8. ^ "Euler's sum of powers conjecture". rosettacode.org. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  9. ^ Garey, M. R.; Johnson, D. S. (1979). Computers and Intractability, a Guide to the Theory of NP-Completeness. W. H. Freeman. ISBN 0716710447.

References

[edit]
[edit]
二尖瓣微量反流什么意思 类风湿关节炎吃什么药效果好 内分泌代谢科是看什么病的 硒片什么牌子好 白带是什么样子
睡不着觉是什么原因引起的 五代十国是什么意思 女人下面 什么味道 头部挂什么科 拉肚子可以吃什么食物
穹窿是什么意思 白开水是什么意思 balmain什么档次 睡眠不好吃什么药最有效 小儿疳积是什么意思
青霉素是什么药 缺少电解质有什么症状 脊椎侧弯挂什么科 神经外科和神经内科有什么区别 智能手环什么品牌好
来月经吃什么水果好clwhiglsz.com 牙周炎吃什么消炎药hcv9jop8ns2r.cn 胸腔疼挂什么科hcv8jop5ns7r.cn 靴型心见于什么病hcv9jop2ns9r.cn 除草剂中毒有什么症状xinmaowt.com
硬下疳是什么意思hcv8jop7ns8r.cn 醋纤是什么面料hcv8jop6ns0r.cn 来事吃什么水果好hcv9jop0ns2r.cn 甲亢吃什么食物好hcv8jop3ns5r.cn 易孕期是什么时候hcv9jop5ns8r.cn
peek是什么材料0735v.com 胸闷气短呼吸困难心慌是什么原因helloaicloud.com 吃什么可以解决便秘hcv8jop3ns9r.cn 化疗后白细胞低吃什么补得快hcv7jop9ns2r.cn 一直干咳是什么原因hcv8jop8ns0r.cn
hb是什么意思医学0735v.com 1.8号是什么星座cl108k.com 破伤风针有什么作用hcv8jop2ns4r.cn 冷面是什么面做的hcv8jop8ns8r.cn 痘痘挤出来的白色东西是什么hcv9jop2ns9r.cn
百度