阑尾炎打什么消炎针好| 骨化性肌炎是什么病| 梨花是什么颜色| 脖子左侧疼是什么前兆| 什么是心理健康| 十二指肠球炎吃什么药| 属狗的什么命| 撕漫男是什么意思| 焦的部首是什么| 申时五行属什么| 医学影像技术是什么| 心理医生挂什么科| 空调一匹是什么意思| 吃什么可以降火祛痘| 9.10是什么星座| 落枕是什么意思| nba打铁是什么意思| 急腹症是什么意思| rp是什么| 甲状腺4级是什么意思| 柠檬吃多了有什么坏处| 乌鸡汤放什么材料| 眼睛不舒服是什么原因引起的| 稠是什么意思| 梦见金蛇有什么预兆| 氨基酸是什么| 点状强回声是什么意思| 吃什么不长肉还能瘦| 阳虚吃什么调理| 92年属猴是什么命| 三sprit是什么牌子| 啐了一口是什么意思| 颈椎曲度变直有什么症状| 早上不晨勃是什么原因| 突然血糖高是什么原因引起的| 副主任医师是什么级别| 气喘吁吁什么意思| 补办身份证需要什么| 大面积杀跳蚤用什么药| 长寿花什么时候扦插| 各位同仁用在什么场合| 为什么会突然晕倒| 手脚出汗是什么原因| 什么是红斑狼疮病| 膀胱壁毛糙是什么意思| 吃饭吧唧嘴有什么说法| 木甚念什么| 什么是血友病| 金蟾折桂什么意思| 十二月九号是什么星座| 中规中矩是什么意思| 女孩什么时辰出生最好| 杞子配什么增强性功能| 薄凉是什么意思| 痛风频繁发作说明什么| 高考600多分能上什么大学| 林彪什么时候死的| 稼穑是什么意思| 姜子牙为什么没有封神| 罗汉果泡水有什么好处| mac是什么牌子| 每天坚持做俯卧撑有什么好处| 手抽筋是什么原因引起的| 女人内心强大说明什么| 妈妈过生日送什么礼物好| 花椒桂圆艾绒敷肚脐有什么作用| 传媒公司是做什么的| 年底是什么时候| 9.23什么星座| 做牛排用什么部位的牛肉| 拉肚子喝什么水| 什么叫丁克| 下面痒用什么药效果好| 什么奶粉比较好| 肝肾不足是什么意思| 龙眼树上的臭虫叫什么| 马蜂蛰了用什么药| 什么什么三什么成语| 做包皮手术挂什么科| 丝瓜只开花不结果是什么原因| 什么时间英文| 双鱼男喜欢什么样的女生| 胃疼为什么后背也疼| 什么的粽子| 梦见找对象是什么意思| 阔腿裤配什么鞋子好看| 排便困难是什么原因| 腊肉炒什么好吃| 甘草有什么功效| 肩胛骨疼痛挂什么科| 做可乐鸡翅用什么可乐| 观音菩萨什么生肖| 突然心跳加快是什么原因| 血便是什么颜色| 上颚疼痛吃什么药| 鼻子上火是什么原因引起的| ttm是什么意思| laurel是什么牌子| lin是什么意思| fbi是什么| 昔人是什么意思| 八仙茶属于什么茶| 超市属于什么行业| 口舌生疮是什么原因| 吃猪心有什么好处和坏处| 毒瘤是什么意思| 蓦然是什么意思| 吃什么对卵巢有好处| 肚子疼喝什么能缓解| 什么是捞女| 正常的白带是什么样的| 梦到前夫什么意思| 龙王庙是指什么生肖| 懵逼是什么意思| 闺房是什么意思| 百合为什么是苦的| 蕾丝边是什么意思| 不由自主的摇头是什么病| 智齿是什么| 低密度脂蛋白偏高吃什么药| 气血两虚是什么意思| 吃榴莲不能吃什么| 狗可以吃什么水果| 你说什么| 劲仔小鱼是什么鱼做的| vsc是什么意思| 看望病人买什么东西好| 疱疹长什么样子图片| 牙膏什么牌子好| 待字闺中什么意思| 小腹凸起是什么原因| 难以启齿是什么意思| 膝盖怕冷是什么原因| 第一颗原子弹叫什么| 结售汇是什么意思| 大腿肌肉酸痛是什么病| 月经粉红色是什么原因| 中医的望闻问切是什么意思| 舌头有齿痕是什么原因| 游离甲状腺素偏低是什么意思| 人为什么需要诗歌| 左手中指痛什么预兆| 临产是什么意思| 早泄是什么| 女人纵欲过度会有什么症状| 降维打击是什么意思| 依托考昔片是什么药| 525什么星座| 心脏彩超挂什么科| 眼睛干痒用什么眼药水| 什么是皮炎| 胎脂是什么原因造成的| 晕3d什么症状| 什么什么一什么| 心脏右束支传导阻滞是什么意思| 肺结核咳血是什么程度| 甲状腺结节是什么意思| 1996属鼠的是什么命| 肌酐高是什么意思| 93鸡和94狗生什么宝宝| 安五行属性是什么| 肝不好挂什么科室| 乳头瘤有什么症状| bdsm是什么意思| 白癜风有什么症状| 气垫是什么| 经常感冒的人吃什么能增强抵抗力| 莲是什么结构的字| 小本生意做什么好赚钱快| 98什么意思| 小排畸主要查什么| zoom 是什么意思| 经常掏耳朵有什么危害| 吃什么水果补肝养肝最有效| 仙人掌能治什么病| 黑色的猫是什么品种| 吃槐花有什么好处| 不解之谜的意思是什么| 塘角鱼吃什么食物| jeep是什么意思| 市公安局政委是什么级别| 肾阳虚和肾阴虚有什么区别症状| 柠檬泡水喝有什么好处| 白虎痣是什么意思| 全身皮肤瘙痒是什么原因引起的| 指纹不清晰是什么原因| 7月22日是什么星座| 胸腔积液吃什么药最有效| 告人诈骗需要什么证据| 文武双全是什么生肖| 女人八卦是什么意思| 肺活量不足是什么症状| 篇幅是什么意思| 世界上最难的数学题是什么| 在吗是什么意思| 丑是什么库| 北京的市花是什么花| 这是什么牌子| 晚上睡觉阴部外面为什么会痒| 吃什么减肥效果最好最快| 一月七号是什么星座| 乱点鸳鸯谱什么意思| 漂洗什么意思| 牛蛋是什么| 女性出汗多是什么原因| 胸小是缺少什么营养| 乙肝表面抗原大于250是什么意思| 过氧化氢阳性是什么意思| 肝内结节是什么意思啊| 个体差异是什么意思| 气滞血瘀是什么意思| 梦见抓螃蟹是什么征兆| 甘油三酯高吃什么能降下来| 肉丝炒什么好吃| 付字五行属什么| 纹理是什么意思| 三七花泡水喝有什么功效| 卡蒂罗属于什么档次| 咳痰带血是什么原因| 硫酸亚铁是什么颜色| 风寒感冒吃什么消炎药| 1997属什么| 剖腹产坐月子可以吃什么水果| 死缓什么意思| 晋字五行属什么| 武则天代表什么生肖| 梦见死人是什么意思| cps是什么| 水肿是什么样子| 什么是阳光抑郁症| 恨嫁什么意思| 鱼香肉丝为什么叫鱼香肉丝| 天时地利人和是什么意思| 牛肉丸子配什么菜好吃| 爷俩是什么意思| 乳腺增生吃什么药效果好| 线雕是什么| 什么店可以买到老鼠药| 乙基麦芽酚是什么东西| 什么屁股摸不得| 普洱茶属于什么茶| 叶公好龙是什么故事| 肝不好吃什么水果| basic是什么意思| 收缩压低是什么原因| 早期肠癌有什么症状| 狰狞是什么意思| 翠字五行属什么| 什么是格林巴利综合症| 兵马俑在什么地方| 哮喘什么症状| 强迫症吃什么药| 三叉神经痛挂什么科就诊| 什么三什么四| 网织红细胞高说明什么| 岁月不饶人是什么意思| 来姨妈喝什么汤好| 匝道什么意思| 海藻面膜有什么作用| 血儿茶酚胺是查什么的| 早上5点是什么时辰| 唾液酸酶阳性是什么意思| 为什么会气虚| 东坡肉是什么菜系| 百度Jump to content

奥地利维也纳一持刀行凶男子被击毙

From Wikipedia, the free encyclopedia
百度 后来我看到了2006年蒋多多考零分的事例,就想效仿她。

Grammar induction (or grammatical inference)[1] is the process in machine learning of learning a formal grammar (usually as a collection of re-write rules or productions or alternatively as a finite-state machine or automaton of some kind) from a set of observations, thus constructing a model which accounts for the characteristics of the observed objects. More generally, grammatical inference is that branch of machine learning where the instance space consists of discrete combinatorial objects such as strings, trees and graphs.

Grammar classes

[edit]

Grammatical inference has often been very focused on the problem of learning finite-state machines of various types (see the article Induction of regular languages for details on these approaches), since there have been efficient algorithms for this problem since the 1980s.

Since the beginning of the century, these approaches have been extended to the problem of inference of context-free grammars and richer formalisms, such as multiple context-free grammars and parallel multiple context-free grammars. Other classes of grammars for which grammatical inference has been studied are combinatory categorial grammars,[2] stochastic context-free grammars,[3] contextual grammars and pattern languages.

Learning models

[edit]

The simplest form of learning is where the learning algorithm merely receives a set of examples drawn from the language in question: the aim is to learn the language from examples of it (and, rarely, from counter-examples, that is, example that do not belong to the language). However, other learning models have been studied. One frequently studied alternative is the case where the learner can ask membership queries as in the exact query learning model or minimally adequate teacher model introduced by Angluin.[4]

Methodologies

[edit]

There is a wide variety of methods for grammatical inference. Two of the classic sources are Fu (1977) and Fu (1982). Duda, Hart & Stork (2001) also devote a brief section to the problem, and cite a number of references. The basic trial-and-error method they present is discussed below. For approaches to infer subclasses of regular languages in particular, see Induction of regular languages. A more recent textbook is de la Higuera (2010),[1] which covers the theory of grammatical inference of regular languages and finite state automata. D'Ulizia, Ferri and Grifoni[5] provide a survey that explores grammatical inference methods for natural languages.

Induction of probabilistic grammars

[edit]

There are several methods for induction of probabilistic context-free grammars.[6][7][further explanation needed]

Grammatical inference by trial-and-error

[edit]

The method proposed in Section 8.7 of Duda, Hart & Stork (2001) suggests successively guessing grammar rules (productions) and testing them against positive and negative observations. The rule set is expanded so as to be able to generate each positive example, but if a given rule set also generates a negative example, it must be discarded. This particular approach can be characterized as "hypothesis testing" and bears some similarity to Mitchel's version space algorithm. The Duda, Hart & Stork (2001) text provide a simple example which nicely illustrates the process, but the feasibility of such an unguided trial-and-error approach for more substantial problems is dubious.

Grammatical inference by genetic algorithms

[edit]

Grammatical induction using evolutionary algorithms is the process of evolving a representation of the grammar of a target language through some evolutionary process. Formal grammars can easily be represented as tree structures of production rules that can be subjected to evolutionary operators. Algorithms of this sort stem from the genetic programming paradigm pioneered by John Koza.[citation needed] Other early work on simple formal languages used the binary string representation of genetic algorithms, but the inherently hierarchical structure of grammars couched in the EBNF language made trees a more flexible approach.

Koza represented Lisp programs as trees. He was able to find analogues to the genetic operators within the standard set of tree operators. For example, swapping sub-trees is equivalent to the corresponding process of genetic crossover, where sub-strings of a genetic code are transplanted into an individual of the next generation. Fitness is measured by scoring the output from the functions of the Lisp code. Similar analogues between the tree structured lisp representation and the representation of grammars as trees, made the application of genetic programming techniques possible for grammar induction.

In the case of grammar induction, the transplantation of sub-trees corresponds to the swapping of production rules that enable the parsing of phrases from some language. The fitness operator for the grammar is based upon some measure of how well it performed in parsing some group of sentences from the target language. In a tree representation of a grammar, a terminal symbol of a production rule corresponds to a leaf node of the tree. Its parent nodes corresponds to a non-terminal symbol (e.g. a noun phrase or a verb phrase) in the rule set. Ultimately, the root node might correspond to a sentence non-terminal.

Grammatical inference by greedy algorithms

[edit]

Like all greedy algorithms, greedy grammar inference algorithms make, in iterative manner, decisions that seem to be the best at that stage. The decisions made usually deal with things like the creation of new rules, the removal of existing rules, the choice of a rule to be applied or the merging of some existing rules. Because there are several ways to define 'the stage' and 'the best', there are also several greedy grammar inference algorithms.

These context-free grammar generating algorithms make the decision after every read symbol:

  • Lempel-Ziv-Welch algorithm creates a context-free grammar in a deterministic way such that it is necessary to store only the start rule of the generated grammar.
  • Sequitur and its modifications.

These context-free grammar generating algorithms first read the whole given symbol-sequence and then start to make decisions:

Distributional learning

[edit]

A more recent approach is based on distributional learning. Algorithms using these approaches have been applied to learning context-free grammars and mildly context-sensitive languages and have been proven to be correct and efficient for large subclasses of these grammars.[8]

Learning of pattern languages

[edit]

Angluin defines a pattern to be "a string of constant symbols from Σ and variable symbols from a disjoint set". The language of such a pattern is the set of all its nonempty ground instances i.e. all strings resulting from consistent replacement of its variable symbols by nonempty strings of constant symbols.[note 1] A pattern is called descriptive for a finite input set of strings if its language is minimal (with respect to set inclusion) among all pattern languages subsuming the input set.

Angluin gives a polynomial algorithm to compute, for a given input string set, all descriptive patterns in one variable x.[note 2] To this end, she builds an automaton representing all possibly relevant patterns; using sophisticated arguments about word lengths, which rely on x being the only variable, the state count can be drastically reduced.[9]

Erlebach et al. give a more efficient version of Angluin's pattern learning algorithm, as well as a parallelized version.[10]

Arimura et al. show that a language class obtained from limited unions of patterns can be learned in polynomial time.[11]

Pattern theory

[edit]

Pattern theory, formulated by Ulf Grenander,[12] is a mathematical formalism to describe knowledge of the world as patterns. It differs from other approaches to artificial intelligence in that it does not begin by prescribing algorithms and machinery to recognize and classify patterns; rather, it prescribes a vocabulary to articulate and recast the pattern concepts in precise language.

In addition to the new algebraic vocabulary, its statistical approach was novel in its aim to:

  • Identify the hidden variables of a data set using real world data rather than artificial stimuli, which was commonplace at the time.
  • Formulate prior distributions for hidden variables and models for the observed variables that form the vertices of a Gibbs-like graph.
  • Study the randomness and variability of these graphs.
  • Create the basic classes of stochastic models applied by listing the deformations of the patterns.
  • Synthesize (sample) from the models, not just analyze signals with it.

Broad in its mathematical coverage, pattern theory spans algebra and statistics, as well as local topological and global entropic properties.

Applications

[edit]

The principle of grammar induction has been applied to other aspects of natural language processing, and has been applied (among many other problems) to semantic parsing,[2] natural language understanding,[13] example-based translation,[14] language acquisition,[15] grammar-based compression,[16] and anomaly detection.[17]

Compression algorithms

[edit]
Straight-line grammar (with start symbol ?) for the second sentence of the United States Declaration of Independence. Each blue character denotes a nonterminal symbol; they were obtained from a gzip-compression of the sentence.

Grammar-based codes or grammar-based compression are compression algorithms based on the idea of constructing a context-free grammar (CFG) for the string to be compressed. Examples include universal lossless data compression algorithms.[18] To compress a data sequence , a grammar-based code transforms into a context-free grammar . The problem of finding a smallest grammar for an input sequence (smallest grammar problem) is known to be NP-hard,[19] so many grammar-transform algorithms are proposed from theoretical and practical viewpoints.

Generally, the produced grammar is further compressed by statistical encoders like arithmetic coding.

See also

[edit]

Notes

[edit]
  1. ^ The language of a pattern with at least two occurrences of the same variable is not regular due to the pumping lemma.
  2. ^ x may occur several times, but no other variable y may occur

References

[edit]
  1. ^ a b de la Higuera, Colin (2010). Grammatical Inference: Learning Automata and Grammars (PDF). Cambridge: Cambridge University Press. Archived from the original (PDF) on 2025-08-05. Retrieved 2025-08-05.
  2. ^ a b Kwiatkowski, Tom, et al. "Lexical generalization in CCG grammar induction for semantic parsing." Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, 2011.
  3. ^ Clark, Alexander. "Unsupervised induction of stochastic context-free grammars using distributional clustering." Proceedings of the 2001 workshop on Computational Natural Language Learning-Volume 7. Association for Computational Linguistics, 2001.
  4. ^ Dana Angluin (1987). "Learning Regular Sets from Queries and Counter-Examples" (PDF). Information and Control. 75 (2): 87–106. CiteSeerX 10.1.1.187.9414. doi:10.1016/0890-5401(87)90052-6. S2CID 11873053. Archived from the original (PDF) on 2025-08-05.
  5. ^ D’Ulizia, A., Ferri, F., Grifoni, P. (2011) "A Survey of Grammatical Inference Methods for Natural Language Learning[dead link]", Artificial Intelligence Review, Vol. 36, No. 1, pp. 1–27.
  6. ^ Talton, Jerry, et al. "Learning design patterns with bayesian grammar induction." Proceedings of the 25th annual ACM symposium on User interface software and technology. 2012.
  7. ^ Kim, Yoon, Chris Dyer, and Alexander M. Rush. "Compound probabilistic context-free grammars for grammar induction." arXiv preprint arXiv:1906.10225 (2019).
  8. ^ Clark and Eyraud (2007) Journal of Machine Learning Research; Ryo Yoshinaka (2011) Theoretical Computer Science
  9. ^ Dana Angluin (1980). "Finding Patterns Common to a Set of Strings". Journal of Computer and System Sciences. 21: 46–62. doi:10.1016/0022-0000(80)90041-0.
  10. ^ T. Erlebach; P. Rossmanith; H. Stadtherr; A. Steger; T. Zeugmann (1997). "Learning One-Variable Pattern Languages Very Efficiently on Average, in Parallel, and by Asking Queries". In M. Li; A. Maruoka (eds.). Proc. 8th International Workshop on Algorithmic Learning Theory — ALT'97. LNAI. Vol. 1316. Springer. pp. 260–276.
  11. ^ Hiroki Arimura; Takeshi Shinohara; Setsuko Otsuki (1994). "Finding Minimal Generalizations for Unions of Pattern Languages and Its Application to Inductive Inference from Positive Data" (PDF). Proc. STACS 11. LNCS. Vol. 775. Springer. pp. 649–660.[dead link]
  12. ^ Grenander, Ulf, and Michael I. Miller. Pattern theory: from representation to inference.[dead link] Vol. 1. Oxford: Oxford university press, 2007.
  13. ^ Miller, Scott, et al. "Hidden understanding models of natural language." Proceedings of the 32nd annual meeting on Association for Computational Linguistics. Association for Computational Linguistics, 1994.
  14. ^ Brown, Ralf D. "Transfer-rule induction for example-based translation." Proceedings of the MT Summit VIII Workshop on Example-Based Machine Translation. 2001.
  15. ^ Chater, Nick, and Christopher D. Manning. "Probabilistic models of language processing and acquisition." Trends in cognitive sciences 10.7 (2006): 335-344.
  16. ^ Cherniavsky, Neva, and Richard Ladner. "Grammar-based compression of DNA sequences." DIMACS Working Group on The Burrows–Wheeler Transform 21 (2004).
  17. ^ Senin, Pavel, et al. "Time series anomaly discovery with grammar-based compression." Edbt. 2015.
  18. ^ Kieffer, J. C.; Yang, E.-H. (2000), "Grammar-based codes: A new class of universal lossless source codes", IEEE Trans. Inf. Theory, 46 (3): 737–754, doi:10.1109/18.841160
  19. ^ Charikar, M.; Lehman, E.; Liu, D.; Panigrahy, R.; Prabharakan, M.; Sahai, A.; Shelat, A. (2005), "The Smallest Grammar Problem", IEEE Trans. Inf. Theory, 51 (7): 2554–2576, doi:10.1109/tit.2005.850116, S2CID 6900082

Sources

[edit]
卢字五行属什么 吃高血压药有什么副作用 玫瑰和月季有什么区别 小孩子眼睛眨得很频繁是什么原因 失眠用什么药最好
破釜沉舟是什么意思 欧金金什么意思 地头蛇比喻什么样的人 手不什么什么 刮宫后能吃什么水果
小郡肝是什么部位 什么不能带上飞机 9月14号是什么星座 cognac是什么酒 氨纶是什么
荔枝都有什么品种 肝功能八项检查什么 异国他乡的异是什么意思 嘴唇淡紫色是什么原因 婀娜多姿是什么意思
三天没有大便是什么原因hcv8jop2ns3r.cn 沙漏是什么意思hcv8jop5ns4r.cn 女生痛经有什么办法缓解hcv8jop3ns3r.cn 李白有什么诗hcv8jop9ns2r.cn 眼花是什么原因引起的hcv7jop6ns4r.cn
筋膜提升术是什么hcv7jop6ns6r.cn 白切鸡用什么鸡做好吃hcv9jop1ns7r.cn 阳光明媚下一句接什么dajiketang.com 为什么头发总是很油cj623037.com 潜血是什么意思hcv7jop9ns3r.cn
眉宇是什么意思hcv8jop0ns0r.cn tfcc是什么hcv8jop8ns5r.cn 犯六冲是什么意思hcv8jop5ns0r.cn 全身无力是什么原因hcv7jop6ns2r.cn 阴虚火旺吃什么水果travellingsim.com
什么是规培hcv9jop0ns0r.cn 胸口疼挂什么科aiwuzhiyu.com 乳头内陷是什么原因hcv7jop5ns6r.cn 肺实性结节是什么意思hcv9jop2ns4r.cn 牛牛是什么hcv8jop6ns4r.cn
百度