正常头皮是什么颜色的| 吃苹果什么意思| 割包皮属于什么科室| 宫腔积液吃什么药效果最好| 茂盛的意思是什么| 皮肤溃烂是什么病| 孙策字什么| 虫草是什么| 泌乳素过高女性会出现什么症状| 酒后打嗝是什么原因| 专升本需要考什么| 最大的淡水湖是什么湖| aba是什么意思| 乌鸡不能和什么一起吃| 对酒当歌是什么生肖| 晨勃是什么| 腰穿是什么意思| 导管是什么意思| 蕊字五行属什么| 马来玉是什么玉| 麦昆牌子是什么档次| 意境是什么意思| 什么是中医| 体重除以身高的平方是什么指数| 拉肚子能吃什么| 佛珠生菇讲述什么道理| 吃什么可以补胶原蛋白| 卡替治疗是什么意思| 两个大于号是什么车| ct胸部平扫检查出什么| 苦瓜有什么作用| 子宫内膜厚是什么原因引起的| qrs波代表什么| 大麦茶有什么功效与作用| 孕妇吃红枣对胎儿有什么好处| 自戕是什么意思| 4月29号0点是什么时候| 开背是什么意思| bpo是什么意思| 心功能不全是什么意思| 久坐睾丸疼是什么原因| 肚子一直咕咕叫是什么原因| 唐僧的袈裟叫什么| 口渴是什么病的前兆| 梦见家里好多蛇是什么预兆| 宇宙外面是什么| 尿蛋白高吃什么药| 猫奴是什么意思| 小腿肿胀是什么原因引起的| 桑黄是什么东西| 大圈什么意思| 尾椎骨疼痛是什么原因| 囊肿是什么引起的| 生肖鼠和什么生肖最配| 喝什么排肝毒最快| 慢性鼻炎用什么药| 血癌是什么原因造成的| 直肠炎吃什么药最好| 孕妇放屁多是什么原因| 一日无书下一句是什么| 早上起来手发麻是什么原因| bni是什么意思| 什么是痔疮早期图片| 饿了吃什么不胖| 女人梦见好多蛇是什么预兆| 小孩脱发是什么原因引起的| 感谢老师送什么花| 布鲁氏菌病是什么病| 七月二十五是什么星座| 忌口不能吃什么| 宫颈鳞状上皮增生是什么意思| 相机hdr功能是什么意思| 乐松是什么药| 清明为什么插柳枝| 磨牙是什么原因引起的| 洧是什么意思| 儿童内分泌科检查什么| 四月天是什么意思| 胎动频繁是什么原因| 晋字五行属什么| 思钱想厚什么意思| 可乐必妥是什么药| 梦到生孩子是什么意思| 太平果是什么水果| 强硬是什么意思| 肝浸润是什么意思| 如鱼得水是什么意思| 人是由什么组成的| 泌乳素什么时候查最准确| 六味地黄丸有什么功效与作用| 吃孕酮片有什么副作用| 青霉素v钾片治什么病| 姨妈提前是什么原因| 暴毙是什么意思| 非球面镜片是什么意思| 拉肚子想吐是什么原因| 疱疹感染是什么病| 贞操是什么| 血小板偏低是什么原因| 奥倍健是什么药| 淘宝交易关闭是什么意思| C反应蛋白高是什么原因| ast是什么| 三句半是什么意思| 左撇子是什么意思| 水钠潴留什么意思| 右侧卵巢囊性回声什么意思| au990是什么金| 鲜红的什么| vm是什么意思| 政五行属什么| 金多水浊什么意思| 什么是好人| 门良念什么| 洁面慕斯和洗面奶有什么区别| 靖国神社是什么地方| 霄是什么意思| 做心电图挂什么科| 子宫囊肿有什么症状| 勤劳的小蜜蜂什么意思| 豆泡是什么| 肝脑涂地是什么意思| 重庆什么时候解放的| 1996属鼠的是什么命| 什么是热射病| 小儿风寒感冒吃什么药最好| iv是什么意思| 胃疼屁多是什么原因| 90年属什么生肖| 蚊香对人体有什么危害| 宫颈炎盆腔炎吃什么药效果最好| 气场什么意思| 谷氨酰基转移酶高是什么原因| 人为什么会失眠| 七五年属什么| 男人喜欢女人什么| 海参是补什么| 霏是什么意思| 低钾血症有什么症状| 里急后重吃什么药最好| 8宫代表什么| 梦见和死去的亲人说话是什么意思| 二聚体测定是什么| 白热化阶段是什么意思| 什么叫家| 什么充电宝能带上飞机| 死间计划到底是什么| 转氨酶偏高是什么意思| 手串断了是什么预兆| 普惠性幼儿园是什么意思| 柏油样便见于什么病| 1月生日是什么星座| 右手手指头麻木是什么病的前兆| 洽谈是什么意思| hdv是什么病毒| 菟丝子是什么| 腿上的肉疼是什么原因| 日落西山是什么生肖| 腰痛应该挂什么科| 两头尖是什么中药| 什么是性上瘾| 漏尿是什么原因引起的| 出其不意下一句是什么| 13朵玫瑰代表什么意思| 432是什么意思| 马太效应是什么意思| 六块钱的麻辣烫是什么意思| 为什么会梦遗| 老鼠跟什么属相最配| 营养包是什么| 人丁兴旺是什么意思| 梦到买房子是什么意思| 扪及是什么意思| 更年期提前是什么症状| 楔形是什么形状| 中指戴戒指是什么意思| 左氧氟沙星是什么药| 拉肚子出血是什么原因| 螳螂捕蝉是什么意思| facebook什么意思| 天秤男喜欢什么样的女生| 椭圆机是什么| 小暑是什么意思| 螃蟹吃什么东西| 海绵体修复吃什么药| 甲状腺肿大挂什么科| 象牙带身上有什么好处| 局级干部是什么级别| 九月二十六是什么星座| 血型b型rh阳性是什么意思| 肝病晚期什么症状| 什么手什么脚| 过氧化氢弱阳性什么意思| 临床表现是什么意思| 左侧卵巢内囊性回声是什么意思| 脑梗要注意什么| 漫山遍野是什么意思| 弱水三千是什么意思| 问号像什么| 你说到底为什么都是我的错| 绝对值是什么意思| 淡盐水漱口有什么好处| 愤是什么生肖| 加湿器有什么用| 穷兵黩武是什么意思| 晨尿有泡沫是什么原因| 小孩多动症是什么原因引起的| 尿失禁是什么意思| 消化性溃疡吃什么药好| 际遇是什么意思| 脚上有痣代表什么| 泌尿内科主要看什么病| 择期什么意思| 薄荷叶泡水喝有什么功效和作用| 孩子咳嗽有痰吃什么药| 老年人经常头晕是什么原因造成的| 反乌托邦什么意思| foreplay是什么意思| 全程c反应蛋白高说明什么| 客观原因是什么意思| 白月光是什么| 大便细是什么原因| pro是什么意思| 江团鱼又叫什么鱼| 为什么蚊子喜欢咬我| am是什么| 被虫子咬了涂什么药膏| 凛冽是什么意思| 马牛羊鸡犬豕中的豕指的是什么| 印度古代叫什么| 蜗牛的触角有什么作用| 转氨酶异常有什么症状| 稍纵即逝什么意思| 乳房疼痛应该挂什么科| 什么人不能吃鸡蛋| 烧心是什么意思| 什么原因| 忌口是什么意思| 做爱吃什么药| 天道好轮回什么意思| 很无奈是什么意思| 什么烟好抽| 领袖是什么意思| 心有不甘是什么意思| 清水是什么意思| 女人吃藕有什么好处| 为什么头发会变白| 肝内囊性灶什么意思| 504是什么错误| 四大洋分别是什么| 凉粉果什么时候成熟| 白带什么时候来| 什么叫凤凰男| 巨蟹座是什么性格| balco是什么牌子手表| 男生小便尿道刺痛什么原因| 破伤风是什么意思| bj什么意思| 常温保存是什么意思| 花洒不出水什么原因| b型钠尿肽是什么意思| 一诺千金是什么意思| 为什么会头痛| 盐酸舍曲林片治疗什么程度的抑郁| 百度Jump to content

海口今年新建8条地下综合管廊 总长度17.66公里

From Wikipedia, the free encyclopedia
(Redirected from Model validation)
百度 主要内容是释迦牟尼佛回答文殊菩萨、普贤菩萨、普眼菩萨、金刚藏菩萨、弥勒菩萨、清净慧菩萨、威德自在菩萨、辩音菩萨、净诸业障菩萨、普觉菩萨、圆觉菩萨和贤善首菩萨就有关修行菩萨道所提出的问题,以长行和偈颂形式宣说如来圆觉的妙理和方法。

In statistics, model validation is the task of evaluating whether a chosen statistical model is appropriate or not. Oftentimes in statistical inference, inferences from models that appear to fit their data may be flukes, resulting in a misunderstanding by researchers of the actual relevance of their model. To combat this, model validation is used to test whether a statistical model can hold up to permutations in the data. Model validation is also called model criticism or model evaluation.

This topic is not to be confused with the closely related task of model selection, the process of discriminating between multiple candidate models: model validation does not concern so much the conceptual design of models as it tests only the consistency between a chosen model and its stated outputs.

There are many ways to validate a model. Residual plots plot the difference between the actual data and the model's predictions: correlations in the residual plots may indicate a flaw in the model. Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the model: there are many kinds of cross validation. Predictive simulation is used to compare simulated data to actual data. External validation involves fitting the model to new data. Akaike information criterion estimates the quality of a model.

Overview

[edit]

Model validation comes in many forms and the specific method of model validation a researcher uses is often a constraint of their research design. To emphasize, what this means is that there is no one-size-fits-all method to validating a model. For example, if a researcher is operating with a very limited set of data, but data they have strong prior assumptions about, they may consider validating the fit of their model by using a Bayesian framework and testing the fit of their model using various prior distributions. However, if a researcher has a lot of data and is testing multiple nested models, these conditions may lend themselves toward cross validation and possibly a leave one out test. These are two abstract examples and any actual model validation will have to consider far more intricacies than describes here but these example illustrate that model validation methods are always going to be circumstantial.

In general, models can be validated using existing data or with new data, and both methods are discussed more in the following subsections, and a note of caution is provided, too.

Validation with existing data

[edit]

Validation based on existing data involves analyzing the goodness of fit of the model or analyzing whether the residuals seem to be random (i.e. residual diagnostics). This method involves using analyses of the models closeness to the data and trying to understand how well the model predicts its own data. One example of this method is in Figure 1, which shows a polynomial function fit to some data. We see that the polynomial function does not conform well to the data, which appears linear, and might invalidate this polynomial model.

Commonly, statistical models on existing data are validated using a validation set, which may also be referred to as a holdout set. A validation set is a set of data points that the user leaves out when fitting a statistical model. After the statistical model is fitted, the validation set is used as a measure of the model's error. If the model fits well on the initial data but has a large error on the validation set, this is a sign of overfitting.

Data (black dots), which was generated via the straight line and some added noise, is perfectly fitted by a curvy polynomial.

Validation with new data

[edit]

If new data becomes available, an existing model can be validated by assessing whether the new data is predicted by the old model. If the new data is not predicted by the old model, then the model might not be valid for the researcher's goals.

With this in mind, a modern approach is to validate a neural network is to test its performance on domain-shifted data. This ascertains if the model learned domain-invariant features.[1]

A note of caution

[edit]

A model can be validated only relative to some application area.[2][3] A model that is valid for one application might be invalid for some other applications. As an example, consider the curve in Figure 1: if the application only used inputs from the interval [0, 2], then the curve might well be an acceptable model.

Methods for validating

[edit]

When doing a validation, there are three notable causes of potential difficulty, according to the Encyclopedia of Statistical Sciences.[4] The three causes are these: lack of data; lack of control of the input variables; uncertainty about the underlying probability distributions and correlations. The usual methods for dealing with difficulties in validation include the following: checking the assumptions made in constructing the model; examining the available data and related model outputs; applying expert judgment.[2] Note that expert judgment commonly requires expertise in the application area.[2]

Expert judgment can sometimes be used to assess the validity of a prediction without obtaining real data: e.g. for the curve in Figure 1, an expert might well be able to assess that a substantial extrapolation will be invalid. Additionally, expert judgment can be used in Turing-type tests, where experts are presented with both real data and related model outputs and then asked to distinguish between the two.[5]

For some classes of statistical models, specialized methods of performing validation are available. As an example, if the statistical model was obtained via a regression, then specialized analyses for regression model validation exist and are generally employed.

Residual diagnostics

[edit]

Residual diagnostics comprise analyses of the residuals to determine whether the residuals seem to be effectively random. Such analyses typically requires estimates of the probability distributions for the residuals. Estimates of the residuals' distributions can often be obtained by repeatedly running the model, i.e. by using repeated stochastic simulations (employing a pseudorandom number generator for random variables in the model).

If the statistical model was obtained via a regression, then regression-residual diagnostics exist and may be used; such diagnostics have been well studied.

Cross validation

[edit]

Cross validation is a method of sampling that involves leaving some parts of the data out of the fitting process and then seeing whether those data that are left out are close or far away from where the model predicts they would be. What that means practically is that cross validation techniques fit the model many, many times with a portion of the data and compares each model fit to the portion it did not use. If the models very rarely describe the data that they were not trained on, then the model is probably wrong.

See also

[edit]

References

[edit]
  1. ^ Feng, Cheng; Zhong, Chaoliang; Wang, Jie; Zhang, Ying; Sun, Jun; Yokota, Yasuto (July 2022). "Learning Unforgotten Domain-Invariant Representations for Online Unsupervised Domain Adaptation". Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization. pp. 2958–2965. doi:10.24963/ijcai.2022/410. ISBN 978-1-956792-00-3.
  2. ^ a b c National Research Council (2012), "Chapter 5: Model validation and prediction", Assessing the Reliability of Complex Models: Mathematical and statistical foundations of verification, validation, and uncertainty quantification, Washington, DC: National Academies Press, pp. 52–85, doi:10.17226/13395, ISBN 978-0-309-25634-6{{citation}}: CS1 maint: multiple names: authors list (link).
  3. ^ Batzel, J. J.; Bachar, M.; Karemaker, J. M.; Kappel, F. (2013), "Chapter 1: Merging mathematical and physiological knowledge", in Batzel, J. J.; Bachar, M.; Kappel, F. (eds.), Mathematical Modeling and Validation in Physiology, Springer, pp. 3–19, doi:10.1007/978-3-642-32882-4_1.
  4. ^ Deaton, M. L. (2006), "Simulation models, validation of", in Kotz, S.; et al. (eds.), Encyclopedia of Statistical Sciences, Wiley.
  5. ^ Mayer, D. G.; Butler, D.G. (1993), "Statistical validation", Ecological Modelling, 68 (1–2): 21–32, doi:10.1016/0304-3800(93)90105-2.

Further reading

[edit]
[edit]
怀孕血糖高有什么症状 河马吃什么食物 梦见自己骑马是什么意思 脑供血不足是什么原因 汉武帝叫什么
任什么任什么 艾滋病有什么特征 西酞普兰为什么早晨吃 qy是什么意思 离岗是什么意思
7朵玫瑰花代表什么意思 人类免疫缺陷病毒抗体是什么意思 蛀牙是什么原因引起的 双子座上升星座是什么 睡觉流眼泪是什么原因
狡黠什么意思 什么是原发性高血压和继发性高血压 朱迅什么病 有福是什么意思 打耳洞去医院挂什么科
幽门螺杆菌什么药最好hcv7jop9ns6r.cn 七月一号是什么星座hcv9jop4ns4r.cn 2月3日什么星座hcv9jop4ns1r.cn 长生殿讲的是什么故事hcv8jop2ns2r.cn 五十岁叫什么之年hanqikai.com
苹果醋什么时候喝最好hcv8jop6ns0r.cn 数字3代表什么意思yanzhenzixun.com 吃什么长头发hcv9jop4ns7r.cn 脾门区结节是什么意思hcv8jop3ns4r.cn 水果皇后是什么水果hcv8jop5ns7r.cn
睾丸是什么意思hcv9jop5ns4r.cn 发烧38度吃什么药qingzhougame.com 腿抽筋是什么原因造成的hcv8jop9ns8r.cn 多多益善什么意思wmyky.com 血稠是什么原因引起的hlguo.com
水痘长什么样子hcv9jop5ns0r.cn 欣什么若什么hcv8jop0ns6r.cn 黑热病是什么病hcv9jop4ns8r.cn 联姻是什么意思hcv8jop2ns3r.cn 睫角守宫吃什么hcv8jop7ns4r.cn
百度