失聪是什么原因造成的| 受精卵发育成什么| 什么动物是爸爸生的| cpr是什么意思| 小腹痛是什么原因| 苯海拉明是什么药| 身份证号码的数字代表什么意义| 原发性是什么意思| 梯是什么意思| 市斤是什么意思| 请婚假需要什么材料| 瑞舒伐他汀钙片什么时候吃| espresso是什么咖啡| 今天出生的男宝宝取什么名字好| 舌头短的人意味着什么| pco2是什么意思| 开飞机需要什么驾照| 塬字五行属什么| 今年是农历的什么年| app是什么缩写| 乙肝两对半45阳性是什么意思| 心直口快是什么意思| 性无能是什么意思| 钙盐是什么| 去湿气吃什么中药| 彼岸花是什么花| 血压低吃什么药| 男属兔和什么属相最配| 包茎挂什么科| 假体隆胸什么材料好| 利大于弊是什么意思| 为什么会蛀牙| 内分泌失调是什么原因引起的| 梦见烙饼是什么意思| 民族是什么意思| 三五成群是什么意思| 七月十六号是什么星座| o型血与b型血生的孩子是什么血型| 洛索洛芬钠片和布洛芬有什么区别| 自然卷的头发适合什么发型| 王者风范是什么意思| 什么洗发水最好| 甲状腺穿刺是什么意思| 吃什么治肝病| 梦见蛇代表什么| 阳光像什么| 蚊子长什么样| 晨勃消失是什么原因| 宫颈欠光滑是什么意思| 孕育是什么意思| 圣诞节是什么时候| damon英文名什么寓意| dym是什么意思| 肝损伤吃什么药| 怀孕乳房会有什么变化| 湿疹吃什么食物好| 桃园三结义是什么意思| 什么叫入伏| 丁是什么意思| 间接胆红素是什么意思| 什么样的牙齿需要矫正| 壅是什么意思| 小苏打可以用什么代替| 承欢膝下是什么意思| 820是什么意思| lbl是什么意思| 良知是什么意思| 老是嗜睡是什么原因| 七月有什么节| 女人没经验开什么店好| 71年属猪是什么命| 血管堵塞有什么症状| 平片是什么| 绿茶喝多了有什么危害| 单核细胞高是什么意思| 半夜两点是什么时辰| 道场是什么意思| 喉咙干痒咳嗽吃什么药| 吃什么能提高性功能| 口干舌燥什么原因| 肝病吃什么药好得快| 为什么短信验证码收不到| 肚子痛拉肚子吃什么药| 来姨妈能吃什么水果| 五险都有什么| 扁桃体发炎有什么症状| 医院为什么不推荐腹膜透析| 哲五行属什么| 大姨妈是什么意思| 畏寒是什么意思| 身体老是出汗是什么原因| 无赖不还钱最怕什么| 嬴稷是秦始皇的什么人| 六月初五是什么星座| 五月一日是什么节日| 电导率是什么意思| 什么牙膏好| 安全期是什么| 钙片什么时间吃最好| 什么是糖类抗原| 脾胃挂什么科| 驴肉不能和什么一起吃| 粒子是什么| 什么叫室性早搏| 牙医靠什么吃饭| 大学挂科是什么意思| 12月22日什么星座| 米酒和黄酒有什么区别| 仁字五行属什么| 日不落是什么意思| 梦到别人给钱是什么意思| 口若悬河是什么意思| 咖喱是什么味道| 丑时是什么时辰| 空窗期是什么意思| 哥哥的女儿叫什么| 什么什么不惧| 北方人立秋吃什么| 心肌酶是检查什么的| 便秘吃什么有用| 银河是什么| emba是什么意思| 40岁属什么| 俄罗斯被称为什么| jio什么意思| 蓝颜知己是什么关系| 属鸡适合佩戴什么饰品| 儿童嗓子哑了什么原因| 赤是什么颜色| 用眼过度用什么眼药水| 属蛇适合佩戴什么饰品| 穿刺检查是什么意思| ad是什么病的简称| 和胃降逆是什么意思| 贤上腺瘤是什么意思| 睡不着觉是什么原因| 胎位lop是什么意思| 人老放屁是什么原因| 人类的祖先是什么生肖| 中国最厉害的武器是什么| 贵阳有什么特产| 四肢无力是什么原因| 跑马了是什么意思| 什么是基础代谢| 肾虚对男生意味着什么| 胎毛什么时候剃最好| 脓血症是什么病严重吗| 草酸是干什么用的| 脖子上长小肉疙瘩是什么原因| 做亲子鉴定需要什么东西| 催乳素偏高有什么影响| 三个火读什么| 安踏是什么品牌| 11.5是什么星座| 天津古代叫什么| 腱鞘炎挂什么科室| 涸的意思是什么| 2月2日什么星座| 花青素是什么颜色| 氪金是什么意思| 五味子不适合什么人喝| 篮球中锋是干什么的| 三七粉有什么作用| 1975年属什么| 木行念什么| 新生儿c反应蛋白高说明什么| 朱元璋为什么不传位给朱棣| 上不来气吃什么药| asic是什么意思| 农历5月是什么星座| 前呼后拥是什么意思| abo溶血症是什么意思| 梦见自己手机丢了是什么意思| 8月是什么季节| 什么是bp| 巨峰葡萄为什么叫巨峰| 杜甫被后人称为什么| a醇对皮肤有什么作用| uin是什么意思| 孕酮低吃什么可以补| 小狗拉稀吃什么药| 鬼一般找什么人压床| 大便隐血阴性是什么意思| 高汤是什么意思| 马来西亚说什么语言| 痛风吃什么好| 慢性鼻窦炎吃什么药| 生理曲度存在是什么意思| 原因是什么| 耳朵上有痣代表什么| 肺部散在小结节是什么意思| 1988年什么命| 胸上长痘痘是什么原因| 白化病是什么| 鲁班是什么家| 农业户口和非农业户口有什么区别| 阴阳代表什么数字| 翊是什么意思| 新西兰用什么货币| 湿气用什么药最好最快| 壤土适合种植什么植物| 煮玉米加盐有什么好处| 胰岛素抵抗吃什么药| 父亲b型血母亲o型血孩子什么血型| 什么咖啡好喝| 芥末为什么会冲鼻| 瘫痪是什么意思| 老火是什么意思| joway是什么牌子| 碘是什么颜色| 高血糖可以吃什么| 保教费是什么意思| 蝴蝶效应是什么| 脂溢性脱发用什么药| 嘴巴里长血泡是什么原因| 声情并茂的意思是什么| 秦始皇为什么要焚书坑儒| 巴宝莉属于什么档次| 为什么会有盆腔炎| 甲胎蛋白什么意思| 孵化是什么意思| 金钱骨是什么部位| 夏天适合用什么护肤品| 吃什么可以增大阴茎| edifier是什么牌子| 35属什么生肖| 嗓子痒是什么原因| 导览是什么意思| sp什么意思| 中耳炎吃什么药效果比较好| 腹膜炎吃什么药| 什么时候验孕最准确| 薜丁山是什么生肖| 冰恋是什么| ab型血和o型血生的孩子是什么血型| 什么因果才会有双胞胎| 月经喝什么比较好| 什么是新鲜感| 泰国有什么好玩| 清火喝什么茶| 肚子里有虫子会有什么症状| 食管裂孔疝什么意思| 石蜡是什么| 五十岁叫什么之年| 润六月是什么意思| 贻字五行属什么| 刷牙时牙龈出血是什么原因| 什么是人肉搜索| 退烧药吃多了有什么副作用| 金脸银脸代表什么人物| 痤疮吃什么药| 咳嗽吃什么好得快| 穷极一生是什么意思| k9什么意思| 邮政ems是什么意思| 1月11是什么星座| 破釜沉舟是什么意思| 战国时期是什么时候| 早上起床喉咙有痰是什么原因| 皮卡丘站起来变成了什么| 工资5k是什么意思| 诗和远方是什么意思| 尾椎骨疼是什么原因| 七月三号什么星座| 百度Jump to content

叙利亚战争血腥视频,土耳其和叙利亚为什么不友

From Wikipedia, the free encyclopedia
百度 通过成功实施“PPP+POD”复合模式,西溪国家湿地公园周边土地实现了大幅增值,不但反哺了该工程150余亿元的前期投入,并且积累了大量资金用于其他项目的生态保护,取得了显著的生态效益、社会效益和经济效益,已成为中国湿地保护和国家湿地公园建设的样板。

Predictive modelling uses statistics to predict outcomes.[1] Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place.[2]

In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam.

Models can use one or more classifiers in trying to determine the probability of a set of data belonging to another set. For example, a model might be used to determine whether an email is spam or "ham" (non-spam).

Depending on definitional boundaries, predictive modelling is synonymous with, or largely overlapping with, the field of machine learning, as it is more commonly referred to in academic or research and development contexts. When deployed commercially, predictive modelling is often referred to as predictive analytics.

Predictive modelling is often contrasted with causal modelling/analysis. In the former, one may be entirely satisfied to make use of indicators of, or proxies for, the outcome of interest. In the latter, one seeks to determine true cause-and-effect relationships. This distinction has given rise to a burgeoning literature in the fields of research methods and statistics and to the common statement that "correlation does not imply causation".

Models

[edit]

Nearly any statistical model can be used for prediction purposes. Broadly speaking, there are two classes of predictive models: parametric and non-parametric. A third class, semi-parametric models, includes features of both. Parametric models make "specific assumptions with regard to one or more of the population parameters that characterize the underlying distribution(s)".[3] Non-parametric models "typically involve fewer assumptions of structure and distributional form [than parametric models] but usually contain strong assumptions about independencies".[4]

Applications

[edit]

Uplift modelling

[edit]

Uplift modelling is a technique for modelling the change in probability caused by an action. Typically this is a marketing action such as an offer to buy a product, to use a product more or to re-sign a contract. For example, in a retention campaign you wish to predict the change in probability that a customer will remain a customer if they are contacted. A model of the change in probability allows the retention campaign to be targeted at those customers on whom the change in probability will be beneficial. This allows the retention programme to avoid triggering unnecessary churn or customer attrition without wasting money contacting people who would act anyway.

Archaeology

[edit]

Predictive modelling in archaeology gets its foundations from Gordon Willey's mid-fifties work in the Virú Valley of Peru.[5] Complete, intensive surveys were performed then covariability between cultural remains and natural features such as slope and vegetation were determined. Development of quantitative methods and a greater availability of applicable data led to growth of the discipline in the 1960s and by the late 1980s, substantial progress had been made by major land managers worldwide.

Generally, predictive modelling in archaeology is establishing statistically valid causal or covariable relationships between natural proxies such as soil types, elevation, slope, vegetation, proximity to water, geology, geomorphology, etc., and the presence of archaeological features. Through analysis of these quantifiable attributes from land that has undergone archaeological survey, sometimes the "archaeological sensitivity" of unsurveyed areas can be anticipated based on the natural proxies in those areas. Large land managers in the United States, such as the Bureau of Land Management (BLM), the Department of Defense (DOD),[6][7] and numerous highway and parks agencies, have successfully employed this strategy. By using predictive modelling in their cultural resource management plans, they are capable of making more informed decisions when planning for activities that have the potential to require ground disturbance and subsequently affect archaeological sites.

Customer relationship management

[edit]

Predictive modelling is used extensively in analytical customer relationship management and data mining to produce customer-level models that describe the likelihood that a customer will take a particular action. The actions are usually sales, marketing and customer retention related.

For example, a large consumer organization such as a mobile telecommunications operator will have a set of predictive models for product cross-sell, product deep-sell (or upselling) and churn. It is also now more common for such an organization to have a model of savability using an uplift model. This predicts the likelihood that a customer can be saved at the end of a contract period (the change in churn probability) as opposed to the standard churn prediction model.

Auto insurance

[edit]

Predictive modelling is utilised in vehicle insurance to assign risk of incidents to policy holders from information obtained from policy holders. This is extensively employed in usage-based insurance solutions where predictive models utilise telemetry-based data to build a model of predictive risk for claim likelihood.[citation needed] Black-box auto insurance predictive models utilise GPS or accelerometer sensor input only.[citation needed] Some models include a wide range of predictive input beyond basic telemetry including advanced driving behaviour, independent crash records, road history, and user profiles to provide improved risk models.[citation needed]

Health care

[edit]

In 2009 Parkland Health & Hospital System began analyzing electronic medical records in order to use predictive modeling to help identify patients at high risk of readmission. Initially, the hospital focused on patients with congestive heart failure, but the program has expanded to include patients with diabetes, acute myocardial infarction, and pneumonia.[8]

In 2018, Banerjee et al.[9] proposed a deep learning model for estimating short-term life expectancy (>3 months) of the patients by analyzing free-text clinical notes in the electronic medical record, while maintaining the temporal visit sequence. The model was trained on a large dataset (10,293 patients) and validated on a separated dataset (1818 patients). It achieved an area under the ROC (Receiver Operating Characteristic) curve of 0.89. To provide explain-ability, they developed an interactive graphical tool that may improve physician understanding of the basis for the model's predictions. The high accuracy and explain-ability of the PPES-Met model may enable the model to be used as a decision support tool to personalize metastatic cancer treatment and provide valuable assistance to physicians.

The first clinical prediction model reporting guidelines were published in 2015 (Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD)), and have since been updated.[10]

Predictive modelling has been used to estimate surgery duration.

Algorithmic trading

[edit]

Predictive modeling in trading is a modeling process wherein the probability of an outcome is predicted using a set of predictor variables. Predictive models can be built for different assets like stocks, futures, currencies, commodities etc.[citation needed] Predictive modeling is still extensively used by trading firms to devise strategies and trade. It utilizes mathematically advanced software to evaluate indicators on price, volume, open interest and other historical data, to discover repeatable patterns.[11]

Lead tracking systems

[edit]

Predictive modelling gives lead generators a head start by forecasting data-driven outcomes for each potential campaign. This method saves time and exposes potential blind spots to help client make smarter decisions.[12]

Notable failures of predictive modeling

[edit]

Although not widely discussed by the mainstream predictive modeling community, predictive modeling is a methodology that has been widely used in the financial industry in the past and some of the major failures contributed to the 2008 financial crisis. These failures exemplify the danger of relying exclusively on models that are essentially backward looking in nature. The following examples are by no mean a complete list:

  1. Bond rating. S&P, Moody's and Fitch quantify the probability of default of bonds with discrete variables called rating. The rating can take on discrete values from AAA down to D. The rating is a predictor of the risk of default based on a variety of variables associated with the borrower and historical macroeconomic data. The rating agencies failed with their ratings on the US$600 billion mortgage backed Collateralized Debt Obligation (CDO) market. Almost the entire AAA sector (and the super-AAA sector, a new rating the rating agencies provided to represent super safe investment) of the CDO market defaulted or severely downgraded during 2008, many of which obtained their ratings less than just a year previously.[citation needed]
  2. So far, no statistical models that attempt to predict equity market prices based on historical data are considered to consistently make correct predictions over the long term. One particularly memorable failure is that of Long Term Capital Management, a fund that hired highly qualified analysts, including a Nobel Memorial Prize in Economic Sciences winner, to develop a sophisticated statistical model that predicted the price spreads between different securities. The models produced impressive profits until a major debacle that caused the then Federal Reserve chairman Alan Greenspan to step in to broker a rescue plan by the Wall Street broker dealers in order to prevent a meltdown of the bond market.[citation needed]

Possible fundamental limitations of predictive models based on data fitting

[edit]

History cannot always accurately predict the future. Using relations derived from historical data to predict the future implicitly assumes there are certain lasting conditions or constants in a complex system. This almost always leads to some imprecision when the system involves people.[citation needed]

Unknown unknowns are an issue. In all data collection, the collector first defines the set of variables for which data is collected. However, no matter how extensive the collector considers his/her selection of the variables, there is always the possibility of new variables that have not been considered or even defined, yet are critical to the outcome.[citation needed]

Algorithms can be defeated adversarially. After an algorithm becomes an accepted standard of measurement, it can be taken advantage of by people who understand the algorithm and have the incentive to fool or manipulate the outcome. This is what happened to the CDO rating described above. The CDO dealers actively fulfilled the rating agencies' input to reach an AAA or super-AAA on the CDO they were issuing, by cleverly manipulating variables that were "unknown" to the rating agencies' "sophisticated" models.[citation needed]

See also

[edit]

References

[edit]
  1. ^ Geisser, Seymour (1993). Predictive Inference: An Introduction. Chapman & Hall. p. [page needed]. ISBN 978-0-412-03471-8.
  2. ^ Finlay, Steven (2014). Predictive Analytics, Data Mining and Big Data. Myths, Misconceptions and Methods (1st ed.). Palgrave Macmillan. p. 237. ISBN 978-1137379276.
  3. ^ Sheskin, David J. (April 27, 2011). Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press. p. 109. ISBN 978-1439858011.
  4. ^ Cox, D. R. (2006). Principles of Statistical Inference. Cambridge University Press. p. 2.
  5. ^ Willey, Gordon R. (1953), "Prehistoric Settlement Patterns in the Virú Valley, Peru", Bulletin 155. Bureau of American Ethnology
  6. ^ Heidelberg, Kurt, et al. "An Evaluation of the Archaeological Sample Survey Program at the Nevada Test and Training Range", SRI Technical Report 02-16, 2002
  7. ^ Jeffrey H. Altschul, Lynne Sebastian, and Kurt Heidelberg, "Predictive Modeling in the Military: Similar Goals, Divergent Paths", Preservation Research Series 1, SRI Foundation, 2004
  8. ^ "Hospital Uses Data Analytics and Predictive Modeling To Identify and Allocate Scarce Resources to High-Risk Patients, Leading to Fewer Readmissions". Agency for Healthcare Research and Quality. 2025-08-06. Retrieved 2025-08-06.
  9. ^ Banerjee, Imon; et al. (2025-08-06). "Probabilistic Prognostic Estimates of Survival in Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives". Scientific Reports. 8 (10037 (2018)): 10037. Bibcode:2018NatSR...810037B. doi:10.1038/s41598-018-27946-5. PMC 6030075. PMID 29968730.
  10. ^ Collins, Gary; et al. (2025-08-06). "TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods". BMJ. 385: e078378. doi:10.1136/bmj-2023-078378. PMC 11019967. PMID 38626948.
  11. ^ "Predictive-Model Based Trading Systems, Part 1 - System Trader Success". System Trader Success. 2025-08-06. Retrieved 2025-08-06.
  12. ^ "Predictive Modeling for Call Tracking". Phonexa. 2025-08-06. Retrieved 2025-08-06.

Further reading

[edit]
男大三后面一句是什么 b是什么牌子 身上红痣多是什么原因 一什么山泉 a1是什么
命运是什么意思 喜欢是什么感觉 突破性出血是什么意思 嗓子挂什么科 拔完智齿需要注意什么
bzd是什么意思 鸡腿炖什么好吃 活检是什么检查 孕妇便秘吃什么最快排便 眼睛模糊用什么药
低温烫伤是什么意思 护士是干什么的 杀手锏是什么意思 什么是扁平足图片 知柏地黄丸有什么作用
longines是什么牌子hlguo.com 焦距是什么意思shenchushe.com 冬至有什么忌讳96micro.com 隋炀帝叫什么名字96micro.com 孕妇吃冰的东西对胎儿有什么影响hcv8jop7ns3r.cn
眼仁发黄是什么原因hcv8jop9ns5r.cn 属鸡本命佛是什么佛hcv9jop3ns5r.cn tr什么意思hcv8jop2ns1r.cn 肌张力高有什么症状hcv9jop6ns6r.cn 舌头白色是什么原因zsyouku.com
suki是什么意思hcv8jop1ns3r.cn 五什么十什么成语ff14chat.com 新生儿满月打什么疫苗adwl56.com 独显是什么意思hcv8jop3ns5r.cn 孟力念什么hcv9jop7ns0r.cn
videos是什么意思huizhijixie.com 前置胎盘是什么原因引起的hcv8jop4ns8r.cn 小青龙是什么龙虾yanzhenzixun.com 婴儿放屁多是什么原因hcv7jop6ns3r.cn 眼皮肿挂什么科hcv9jop7ns4r.cn
百度