小揪揪什么意思| 胃不舒服吃什么水果好| 宫颈炎吃什么药| 棱长是什么意思| 手臂肌肉跳动是什么原因| 为什么生化妊娠是好事| 甲醛什么味| 咳嗽不停是什么原因| 结甲可能是什么意思| 多愁善感是什么意思| 条件反射是什么意思| 梦见自己吃肉是什么预兆| 做梦梦到老婆出轨是什么意思| 缅甸的首都叫什么名字| zzegna是什么牌子价格| 尿蛋白高是什么原因引起的| 视网膜脱落是什么原因引起的| 肠梗阻挂什么科| 属马的女生和什么属相最配| 桔梗是什么| 按摩脚底有什么好处| 6月1是什么星座| 胃窦炎吃什么药| nnd什么意思| 英国为什么叫日不落帝国| 梦见旋风是什么预兆| 吃芒果过敏吃什么药| 雨对什么字| 丙氨酸是什么| 2月4号是什么星座| 脚上长水泡是什么原因引起的| 梦见牛肉有什么征兆| 巨细胞病毒阳性什么意思| 9月6日什么星座| 血管检查是做什么检查| 有什么不能说| 化名是什么意思| 心脏跳的慢吃什么好| 脂肪肝吃什么中成药| 青春永驻什么意思| 鬓发是什么意思| 什么是精神| 情有独钟是什么意思| 浑浊是什么意思| 公粮是什么意思| 蓟类植物是什么| 眼睛怕光是什么原因| 拔牙为什么要验血| 窗口是什么意思| 乌龟下蛋预示着什么| 什么颜薄命| 秋五行属什么| 1129什么星座| 颜文字是什么意思| 7月初7是什么日子| 月牙是什么| 笃定什么意思| 英语一和英语二有什么区别| 大拇指旁边是什么指| 腱子肉是什么意思| 工作机制是什么意思| 树叶为什么是绿色的| 经期肚子疼是什么原因| 吃什么东西补肾| 夏天喝什么茶比较好| 肛门潮湿用什么药最好| 嗓子总有痰吃什么药| 拉肚子吃什么好得快| 黄金螺吃什么| 颈椎痛吃什么药最好| 2017是什么年| 梅花三弄的三弄指什么| 吃什么补充dha| z是什么品牌| 做梦吃面条是什么预兆| 上火喝什么比较好| 睡觉被口水呛醒是什么原因| 什么手什么脚| 长生殿讲的是什么故事| 护佑是什么意思| 玫瑰花泡茶有什么功效| 纵隔淋巴结转移是什么意思| 肚子胀痛吃什么药| 喝水都会胖是什么原因| 吃什么补充胶原蛋白| 男人右眼皮跳是什么预兆| 今天什么年| 海绵体修复吃什么药| 北戴河在什么地方| 晚上十一点半是什么时辰| 查血糖是什么检查项目| 1940年属什么生肖| ivd是什么意思| 什么的风采| 五朵玫瑰花代表什么意思| 前列腺炎忌口什么食物| 哈乐是什么药| 梦见小黑蛇是什么预兆| 广州有什么玩的| 什么是皈依| 3.19号是什么星座| 吃山竹有什么好处和坏处| 锌是补什么的| 伟哥叫什么| 白夜是什么意思| 脾脏结节一般是什么病| 2025什么年| 语言障碍挂什么科| act什么意思| 昂字五行属什么| 什么不动| 怀孕失眠是什么原因| 眼压高是什么意思| 什么对眼睛好| 偏光眼镜是什么意思| 脐血流检查是什么| 菌子不能和什么一起吃| 养猫有什么好处| 肛门裂口是用什么药膏| 朱是什么颜色| 头秃了一块是什么原因| aqi是什么意思| 女性尿频繁是什么原因| 丑五行属什么| 眉什么眼什么| 粉底和气垫的区别是什么| 淋巴发炎是什么症状| 烤鸭为什么那么便宜| 除草剂中毒有什么症状| 受益匪浅是什么意思| 莲子和什么搭配最好| pt什么意思| 小妾是什么意思| 小儿麻痹是什么病| 运钞车押运员是什么人| 什么茶降血压效果最好| 哈喽是什么意思| 什么是pid| 舌头痒是什么原因| 阴米是什么米| 贴黄瓜片对皮肤有什么好处| 小手指麻木是什么原因引起的| 鸽子补什么| 三眼花翎是什么意思| 甘油三酯高吃什么药| 补牙挂什么科| 五彩斑斓是什么意思| 戒烟有什么好处| 背道而驰什么意思| 卡姿兰属于什么档次| 高血压喝什么茶| 灰指甲挂号挂什么科| 小孩子长白头发是什么原因| ivd是什么意思| 宝宝拉黑色大便是什么原因| 气血不足吃什么食物| 什么族不吃猪肉| 耳朵上长痘痘什么原因| 仓鼠喝什么水| 遗传物质的载体是什么| 扶她是什么意思| 什么样的人死后还会出现| 神仙眷侣是什么意思| 骨刺是什么原因引起的| 天蝎座是什么性格| 甲功四项是什么检查项目| 过敏有什么症状| 大便红褐色是什么原因| 今天什么日子| 爱戴是什么意思| 腿发软无力是什么原因引起的| 预防脑梗吃什么药| 胃不好吃什么水果最好| 胸腔积液叩诊什么音| 双侧腋窝淋巴结可见什么意思| 怀孕什么时候可以同房| 着床什么意思| 搬家送什么礼物最好| 尿酸高挂什么科| 为什么会流鼻血什么原因引起的| 锋芒的意思是什么| 联票是什么意思| 早晨六点是什么时辰| 骨龄什么时候闭合| 掉筷子有什么预兆| 右眼皮跳代表什么| 增强免疫力吃什么| 肚子左边疼是什么原因| 吃雪燕有什么好处| 蜱虫的天敌是什么| 90年什么命| 动态密码是什么| 男人蛋皮痒用什么药| 2007年属什么生肖| 支气管炎不能吃什么| 明天是什么生肖| 梨是什么季节的水果| 妨夫是什么意思| 炎细胞是什么意思| 黄加黑变成什么颜色| 脑供血不足什么原因| 痃癖是什么病| 石人工念什么| 走路腿软没劲是什么原因引起的| 什么情况下会宫外孕| 甲亢是一种什么病| nibp是什么意思| 皮卡丘站起来变成了什么| 肝实质回声不均匀是什么意思| 已佚是什么意思| 什么吹风机好用| 27年属什么生肖| 1981属什么生肖| 安是什么意思| 外科检查一般检查什么| 滔滔不绝的绝什么意思| 1978年什么命| 让平是什么意思| 流鼻血不止是什么原因| 医学检验技术是干什么的| prime是什么意思| span是什么意思| 芍药什么时候开花| 利率是什么| 一九八八年属什么生肖| 痛风可以喝什么酒| 白萝卜什么时候种| 外阴有白色的东西是什么| 失眠吃什么药| 吃什么可以止咳化痰| 腋下出汗是什么原因| 鬼最怕什么颜色| dtc是什么意思| 烫伤涂什么| 头晕需要做什么检查| 宫颈筛查是什么意思| 梅兰竹菊代表什么生肖| 牛黄是什么| 梦见棺材是什么征兆| 身份证前六位代表什么| 蛋白粉吃多了有什么危害| 小孩肛门瘙痒什么原因| 欲钱看正月初一是什么生肖| 痔疮有什么特征| petct是什么| 猪八戒的真名叫什么| 生姜什么时候种| 看病人送什么水果| 中午十二点是什么时辰| 本来无一物何处惹尘埃什么意思| 喝普洱茶有什么功效| 邪气入体是什么症状| 啫喱是什么| 氯雷他定为什么比西替利嗪贵| 2月15号是什么星座| 最快的速度是什么| 女生学什么专业好| 支气管舒张试验阳性是什么意思| 尿失禁吃什么药最好| 鸡爪煲汤放什么材料| 小腿抽筋什么原因| 手脱皮用什么药好得快| 为什么一吹空调就鼻塞| 淋巴结回声是什么意思| 百度Jump to content

车讯:新蒙迪欧亮相广州车展 看主流外媒如何评

From Wikipedia, the free encyclopedia
百度 江苏省泰州市政协副主席、市教育局局长奚爱国认为,规范管理不是简单做减法。

An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry (which makes the concept of a group useful in this context). Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory. They play a central role in describing observables (measurable quantities like energy, momentum, etc.).

Operators in classical mechanics

[edit]

In classical mechanics, the movement of a particle (or system of particles) is completely determined by the Lagrangian or equivalently the Hamiltonian , a function of the generalized coordinates q, generalized velocities and its conjugate momenta:

If either L or H is independent of a generalized coordinate q, meaning the L and H do not change when q is changed, which in turn means the dynamics of the particle are still the same even when q changes, the corresponding momenta conjugate to those coordinates will be conserved (this is part of Noether's theorem, and the invariance of motion with respect to the coordinate q is a symmetry). Operators in classical mechanics are related to these symmetries.

More technically, when H is invariant under the action of a certain group of transformations G:

.

The elements of G are physical operators, which map physical states among themselves.

Table of classical mechanics operators

[edit]
Transformation Operator Position Momentum
Translational symmetry
Time translation symmetry
Rotational invariance
Galilean transformations
Parity
T-symmetry

where is the rotation matrix about an axis defined by the unit vector and angle θ.

Generators

[edit]

If the transformation is infinitesimal, the operator action should be of the form

where is the identity operator, is a parameter with a small value, and will depend on the transformation at hand, and is called a generator of the group. Again, as a simple example, we will derive the generator of the space translations on 1D functions.

As it was stated, . If is infinitesimal, then we may write

This formula may be rewritten as

where is the generator of the translation group, which in this case happens to be the derivative operator. Thus, it is said that the generator of translations is the derivative.

The exponential map

[edit]

The whole group may be recovered, under normal circumstances, from the generators, via the exponential map. In the case of the translations the idea works like this.

The translation for a finite value of may be obtained by repeated application of the infinitesimal translation:

with the standing for the application times. If is large, each of the factors may be considered to be infinitesimal:

But this limit may be rewritten as an exponential:

To be convinced of the validity of this formal expression, we may expand the exponential in a power series:

The right-hand side may be rewritten as

which is just the Taylor expansion of , which was our original value for .

The mathematical properties of physical operators are a topic of great importance in itself. For further information, see C*-algebra and Gelfand–Naimark theorem.

Operators in quantum mechanics

[edit]

The mathematical formulation of quantum mechanics (QM) is built upon the concept of an operator.

Physical pure states in quantum mechanics are represented as unit-norm vectors (probabilities are normalized to one) in a special complex Hilbert space. Time evolution in this vector space is given by the application of the evolution operator.

Any observable, i.e., any quantity which can be measured in a physical experiment, should be associated with a self-adjoint linear operator. The operators must yield real eigenvalues, since they are values which may come up as the result of the experiment. Mathematically this means the operators must be Hermitian.[1] The probability of each eigenvalue is related to the projection of the physical state on the subspace related to that eigenvalue. See below for mathematical details about Hermitian operators.

In the wave mechanics formulation of QM, the wavefunction varies with space and time, or equivalently momentum and time (see position and momentum space for details), so observables are differential operators.

In the matrix mechanics formulation, the norm of the physical state should stay fixed, so the evolution operator should be unitary, and the operators can be represented as matrices. Any other symmetry, mapping a physical state into another, should keep this restriction.

Wavefunction

[edit]

The wavefunction must be square-integrable (see Lp spaces), meaning:

and normalizable, so that:

Two cases of eigenstates (and eigenvalues) are:

  • for discrete eigenstates forming a discrete basis, so any state is a sum where ci are complex numbers such that |ci|2 = ci*ci is the probability of measuring the state , and the corresponding set of eigenvalues ai is also discrete - either finite or countably infinite. In this case, the inner product of two eigenstates is given by , where denotes the Kronecker Delta. However,
  • for a continuum of eigenstates forming a continuous basis, any state is an integral where c(φ) is a complex function such that |c(φ)|2 = c(φ)*c(φ) is the probability of measuring the state , and there is an uncountably infinite set of eigenvalues a. In this case, the inner product of two eigenstates is defined as , where here denotes the Dirac Delta.

Linear operators in wave mechanics

[edit]

Let ψ be the wavefunction for a quantum system, and be any linear operator for some observable A (such as position, momentum, energy, angular momentum etc.). If ψ is an eigenfunction of the operator , then

where a is the eigenvalue of the operator, corresponding to the measured value of the observable, i.e. observable A has a measured value a.

If ψ is an eigenfunction of a given operator , then a definite quantity (the eigenvalue a) will be observed if a measurement of the observable A is made on the state ψ. Conversely, if ψ is not an eigenfunction of , then it has no eigenvalue for , and the observable does not have a single definite value in that case. Instead, measurements of the observable A will yield each eigenvalue with a certain probability (related to the decomposition of ψ relative to the orthonormal eigenbasis of ).

In bra–ket notation the above can be written;

that are equal if is an eigenvector, or eigenket of the observable A.

Due to linearity, vectors can be defined in any number of dimensions, as each component of the vector acts on the function separately. One mathematical example is the del operator, which is itself a vector (useful in momentum-related quantum operators, in the table below).

An operator in n-dimensional space can be written:

where ej are basis vectors corresponding to each component operator Aj. Each component will yield a corresponding eigenvalue . Acting this on the wave function ψ:

in which we have used

In bra–ket notation:

Commutation of operators on Ψ

[edit]

If two observables A and B have linear operators and , the commutator is defined by,

The commutator is itself a (composite) operator. Acting the commutator on ψ gives:

If ψ is an eigenfunction with eigenvalues a and b for observables A and B respectively, and if the operators commute:

then the observables A and B can be measured simultaneously with infinite precision, i.e., uncertainties , simultaneously. ψ is then said to be the simultaneous eigenfunction of A and B. To illustrate this:

It shows that measurement of A and B does not cause any shift of state, i.e., initial and final states are same (no disturbance due to measurement). Suppose we measure A to get value a. We then measure B to get the value b. We measure A again. We still get the same value a. Clearly the state (ψ) of the system is not destroyed and so we are able to measure A and B simultaneously with infinite precision.

If the operators do not commute:

they cannot be prepared simultaneously to arbitrary precision, and there is an uncertainty relation between the observables

even if ψ is an eigenfunction the above relation holds. Notable pairs are position-and-momentum and energy-and-time uncertainty relations, and the angular momenta (spin, orbital and total) about any two orthogonal axes (such as Lx and Ly, or sy and sz, etc.).[2]

Expectation values of operators on Ψ

[edit]

The expectation value (equivalently the average or mean value) is the average measurement of an observable, for particle in region R. The expectation value of the operator is calculated from:[3]

This can be generalized to any function F of an operator:

An example of F is the 2-fold action of A on ψ, i.e. squaring an operator or doing it twice:

Hermitian operators

[edit]

The definition of a Hermitian operator is:[1]

Following from this, in bra–ket notation:

Important properties of Hermitian operators include:

  • real eigenvalues,
  • eigenvectors with different eigenvalues are orthogonal,
  • eigenvectors can be chosen to be a complete orthonormal basis,

Operators in matrix mechanics

[edit]

An operator can be written in matrix form to map one basis vector to another. Since the operators are linear, the matrix is a linear transformation (aka transition matrix) between bases. Each basis element can be connected to another,[3] by the expression:

which is a matrix element:

A further property of a Hermitian operator is that eigenfunctions corresponding to different eigenvalues are orthogonal.[1] In matrix form, operators allow real eigenvalues to be found, corresponding to measurements. Orthogonality allows a suitable basis set of vectors to represent the state of the quantum system. The eigenvalues of the operator are also evaluated in the same way as for the square matrix, by solving the characteristic polynomial:

where I is the n × n identity matrix, as an operator it corresponds to the identity operator. For a discrete basis:

while for a continuous basis:

Inverse of an operator

[edit]

A non-singular operator has an inverse defined by:

If an operator has no inverse, it is a singular operator. In a finite-dimensional space, an operator is non-singular if and only if its determinant is nonzero:

and hence the determinant is zero for a singular operator.

Table of Quantum Mechanics operators

[edit]

The operators used in quantum mechanics are collected in the table below (see for example[1][4]). The bold-face vectors with circumflexes are not unit vectors, they are 3-vector operators; all three spatial components taken together.

Operator (common name/s) Cartesian component General definition SI unit Dimension
Position m [L]
Momentum General

General

J s m?1 = N s [M] [L] [T]?1
Electromagnetic field

Electromagnetic field (uses kinetic momentum; A, vector potential)

J s m?1 = N s [M] [L] [T]?1
Kinetic energy Translation

J [M] [L]2 [T]?2
Electromagnetic field

Electromagnetic field (A, vector potential)

J [M] [L]2 [T]?2
Rotation (I, moment of inertia)

Rotation

[citation needed]

J [M] [L]2 [T]?2
Potential energy N/A J [M] [L]2 [T]?2
Total energy N/A Time-dependent potential:

Time-independent:

J [M] [L]2 [T]?2
Hamiltonian J [M] [L]2 [T]?2
Angular momentum operator J s = N s m [M] [L]2 [T]?1
Spin angular momentum

where

are the Pauli matrices for spin-1/2 particles.

where σ is the vector whose components are the Pauli matrices.

J s = N s m [M] [L]2 [T]?1
Total angular momentum J s = N s m [M] [L]2 [T]?1
Transition dipole moment (electric) C m [I] [T] [L]

Examples of applying quantum operators

[edit]

The procedure for extracting information from a wave function is as follows. Consider the momentum p of a particle as an example. The momentum operator in position basis in one dimension is:

Letting this act on ψ we obtain:

if ψ is an eigenfunction of , then the momentum eigenvalue p is the value of the particle's momentum, found by:

For three dimensions the momentum operator uses the nabla operator to become:

In Cartesian coordinates (using the standard Cartesian basis vectors ex, ey, ez) this can be written;

that is:

The process of finding eigenvalues is the same. Since this is a vector and operator equation, if ψ is an eigenfunction, then each component of the momentum operator will have an eigenvalue corresponding to that component of momentum. Acting on ψ obtains:

See also

[edit]

References

[edit]
  1. ^ a b c d Molecular Quantum Mechanics Parts I and II: An Introduction to Quantum Chemistry (Volume 1), P.W. Atkins, Oxford University Press, 1977, ISBN 0-19-855129-0
  2. ^ Ballentine, L. E. (1970), "The Statistical Interpretation of Quantum Mechanics", Reviews of Modern Physics, 42 (4): 358–381, Bibcode:1970RvMP...42..358B, doi:10.1103/RevModPhys.42.358
  3. ^ a b Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546-9
  4. ^ Operators - The Feynman Lectures on Physics
大便失禁是什么原因 什么情况 梦见找鞋子是什么意思 忉利天是什么意思 一什么柳树
什么地移入 诺什么意思 四肢厥逆是什么意思 带状疱疹看什么科 蟋蟀吃什么食物
脉搏快是什么原因 做梦梦见鬼是什么预兆 嘴唇上长痘是什么原因 嫦娥住的宫殿叫什么 为什么老长口腔溃疡
一什么蔷薇 绝对值是什么意思 求知欲的欲什么意思 上海话小赤佬是什么意思 肝郁脾虚吃什么药效果最好
荔枝什么人不能吃hcv8jop9ns7r.cn 囊肿什么意思hcv9jop4ns1r.cn 二级建造师什么时候出成绩hcv8jop2ns7r.cn 美沙芬片是什么药hcv8jop0ns4r.cn 玫琳凯属于什么档次hcv9jop5ns6r.cn
囊肿是什么引起的hcv8jop7ns7r.cn 什么因果才会有双胞胎hcv7jop6ns4r.cn 什么头什么脑hcv8jop7ns9r.cn 什么海翻江hcv8jop5ns0r.cn 世界上最小的国家是什么hcv8jop4ns3r.cn
218号是什么星座hcv8jop0ns5r.cn 子宫内膜增生有什么症状hcv9jop1ns1r.cn 为什么乳头会变黑hcv7jop6ns2r.cn 在家无聊可以干什么hcv9jop6ns9r.cn 生殖器疱疹是什么原因引起的luyiluode.com
属马跟什么属相犯冲hcv8jop0ns8r.cn 心脏不好有什么症状hcv8jop3ns2r.cn 脸上长小疙瘩是什么原因hcv7jop6ns9r.cn 什么是脑中风hcv9jop3ns4r.cn acer是什么牌子hcv8jop0ns7r.cn
百度