振字五行属什么| 社日是什么意思| 男人左手麻木什么原因| 苹果5s什么时候上市的| 亚麻籽是什么| 受凉胃疼吃什么药| lynn是什么意思| 梦到挖坟墓是什么意思| 在什么什么后面| 交际花是什么意思| 心大是什么意思| 咳绿痰是什么原因| 艾灸起水泡是什么原因| 慧根是什么意思| 40岁男人性功能减退是什么原因| 腰疼吃什么药好| lynn是什么意思| 淼念什么| 6月26什么星座| 痔疮可以吃什么| 生理盐水和食用盐水有什么区别| 西洋参什么时候吃效果最好| 翡翠的五行属性是什么| 高原反应的原因是什么| 长期低烧是什么原因| 大便遇水就散什么原因| 食管反流用什么药| 得乙肝的人有什么症状| 手心发烧是什么原因| 灰色裤子配什么上衣| 牙龈和牙齿分离是什么原因| 阳起石是什么东西| 莱赛尔是什么面料| 藿香正气水什么时候喝| 舌炎是什么原因引起的怎样治疗| 眼底出血是什么症状| 什么植物吸收甲醛| 少将相当于地方什么级别| 上窄下宽的脸型适合什么发型| 转述句是什么意思| 点了痣要注意什么| 熊猫为什么有黑眼圈| 农历6月28日是什么星座| david是什么意思| 螃蟹不能和什么水果一起吃| 肚子有腹水是什么症状| 老炮是什么意思| 炖猪蹄放什么调料| 幽门阳性是什么意思| 什么是丹毒| 扑尔敏是什么药| 重庆市长是什么级别| 精囊腺囊肿是什么意思| 柏拉图爱情是什么意思| 尿隐血弱阳性是什么意思| 嬲什么意思| 泌尿外科主要看什么病| 拍肺部ct挂什么科| 音乐制作人是干什么的| 女性尿道口有小疙瘩是什么原因| 尔尔是什么意思| 达泊西汀是什么药| 中山市有什么大学| 口字旁的字和什么有关| 连麦是什么意思| 风湿是什么原因造成的| 鱼什么时候产卵| 夏祺是什么意思| 切花是什么意思| 急性尿路感染吃什么药| 晚上9点是什么时辰| 小便短赤是什么意思| 奥美拉唑有什么副作用| p2是什么意思| 软文什么意思| 怀孕了吃什么药可以打掉| 孕酮什么意思| 80年属什么生肖| 肝炎是什么原因引起的| 结扎对女人有什么伤害| 康复治疗技术是什么| 情有独钟是什么意思| 一什么水井| 中医经方是什么意思| 糖类抗原什么意思| 有偿什么意思| 耳朵发痒是什么原因| 4.9是什么星座| 山魈是什么| 家产是什么意思| 香菇炒什么菜好吃| 女人排卵期什么时候| 脸上白了一小块是什么原因| 肾在什么位置| 休克是什么| 痰多吃什么好| 睡眠时间短是什么原因| 瑗是什么意思| 二黑是什么意思| 扎西德勒是什么意思| 股票换手率是什么意思| 蒲公英什么时候开花| 跨界是什么意思| 白茶是什么茶| 避免是什么意思| 羟苯乙酯是什么| 什么是前鼻音和后鼻音| 肺部结节灶是什么意思啊| 音容笑貌的意思是什么| 石男是什么意思| 细胞结构包括什么| 膀胱尿潴留是什么意思| 我们在干什么| 神经系统由什么组成| 什么叫西米| 什么口服液补血补气最好| 脾胃虚弱吃什么食物补| 什么叫放射性疼痛| 大便带绿色是什么原因| 经常手淫会导致什么| 平坦的反义词是什么| 等闲之辈是什么意思| 胃食管反流什么症状| 丙子日是什么意思| 脾胃不好吃什么| uspoloassn是什么牌子| 小脑的功能是什么| 什么力竭| 压疮是什么| 顺风顺水什么意思| 处心积虑是什么意思| 回南天是什么时候| 孕期血糖高可以吃什么水果| 1989年属蛇是什么命| 过度是什么意思| 脾围是什么意思| 心里堵得慌是什么原因| 负荆请罪的负是什么意思| 女性割礼是什么| 封顶是什么意思| td代表什么意思| av是什么意思| 婴儿游泳有什么好处和坏处| 人体缺硒会有什么症状| 羊奶粉和牛奶粉有什么区别| 年轻人白头发是什么原因引起的| 振幅是什么意思| 反常是什么意思| 稀料是什么| 热玛吉是做什么的| 女为悦己者容是什么意思| sheen是什么牌子的手表| 摩羯座是什么动物| 黄体破裂什么意思| 牙神经疼吃什么药| 我好想你是什么歌| 三什么五什么| 手淫过多会导致什么| 龟头脱皮是什么原因| 吃得苦中苦方为人上人是什么意思| 减肥期间可以喝什么饮料| 07年是什么年| 海黄瓜是什么| 什么工作最赚钱| 看病人送什么鲜花好| 内招是什么意思| 惊弓之鸟告诉我们什么道理| 什么水果不能吃| 腰果是什么树的果实| 血滴子是什么意思| 卢沟桥事变又称什么| 身份证拍照穿什么衣服| 蝴蝶兰什么时候开花| 梦见苍蝇很多是什么意思| 托马斯是什么意思| 栀子对妇科有什么功效| 车前草的作用是什么| 中药学是干什么的| 榴莲不能和什么水果一起吃| 大方得体是什么意思| 2049年是什么年| 海鲜不能和什么一起吃| 益生菌和益生元有什么区别| s1隐裂是什么意思| 肺与什么相表里| 眩晕症是什么| 双鱼座是什么象星座| 器质性心脏病是什么意思| 恩五行属什么| 黑无常叫什么| vans是什么牌子| 血常规红细胞偏高是什么原因| 灰指甲是什么样的图片| 7.4是什么星座| 高湛为什么帮梅长苏| 金鱼藻是什么植物| 口臭严重吃什么药好得快| 输卵管发炎有什么症状表现| 闭塞是什么意思| 烧烤烤什么好吃| 洋葱吃多了有什么坏处| 嗓子不舒服挂什么科| 什么叫幽门螺旋杆菌| 口臭应该挂什么科| 你算个什么东西| 六爻是什么意思| 冬字五行属什么| 苹果a1661是什么型号| 汗味酸臭是什么原因| 什么是阳痿| 猪朋狗友是什么意思| 小孩吃什么提高免疫力| 女性盆腔炎吃什么药| 怀孕了吃什么药能打掉| 外围是什么| 乙状结肠管状腺瘤是什么意思| 夏天喝什么水最好| 格拉苏蒂手表什么档次| 贤上腺瘤是什么意思| 绿茶有什么好处| 血管瘤有什么危害吗| 什么是固态法白酒| 羊水偏少对胎儿有什么影响| 女人外阴瘙痒用什么药| 宇宙的外面是什么| 6月18号什么星座| 孩子鼻子流鼻血是什么原因| 屁股痛是什么原因| 吃什么容易便秘| er是什么意思| 突然长胖是什么原因造成的| 多吃木耳有什么好处和坏处| 不自爱是什么意思| 思诺思是什么药| 肌肉萎缩是什么症状| 和南圣众是什么意思| 尿急尿频吃什么药| 食道不舒服挂什么科| 陈皮泡水喝有什么功效和作用| 吃什么能排结石| 出格是什么意思| 什么叫奢侈| 感冒干咳无痰吃什么药| 牡丹花什么时候开| 书生是什么生肖| 宫后积液是什么意思| 吃李子不能吃什么| 出球小动脉流什么血| 生辰八字是指什么| 安欣是什么电视剧| 为什么心脏会突然刺痛| 狗仗人势是什么生肖| 请佛像回家有什么讲究| 脱氧核糖是什么| 胎儿左心室点状强回声是什么意思| 钮祜禄氏现在姓什么| 形容高兴的词语有什么| 头汗特别多是什么原因| 198是什么意思| 622188开头是什么银行| 症瘕是什么意思| 生理盐水有什么用| 二级警督是什么级别| 6月23日是什么星座| 百度Jump to content

平潭综合实验区旅游发展委员会(闽ICP备15027594号-1)

From Wikipedia, the free encyclopedia
百度 中国日报网3月23日电(妮思娜)北京时间3月23日,美国总统签署备忘录,宣布将对一系列中国进口商品征收600亿美元关税,并将在15天内公布商品清单,涵盖1300种产品,金额约500亿美元。

The programmable metallization cell, or PMC, is a non-volatile computer memory developed at Arizona State University. PMC, a technology developed to replace the widely used flash memory, providing a combination of longer lifetimes, lower power, and better memory density. Infineon Technologies, who licensed the technology in 2004, refers to it as conductive-bridging RAM, or CBRAM. CBRAM became a registered trademark of Adesto Technologies in 2011.[1] NEC has a variant called "Nanobridge" and Sony calls their version "electrolytic memory".

Description

[edit]

PMC is a two terminal resistive memory technology developed at Arizona State University. PMC is an electrochemical metallization memory that relies on redox reactions to form and dissolve a conductive filament.[2] The state of the device is determined by the resistance across the two terminals. The existence of a filament between the terminals produces a low resistance state (LRS) while the absence of a filament results in a high resistance state (HRS). A PMC device is made of two solid metal electrodes, one relatively inert (e.g., tungsten or nickel) the other electrochemically active (e.g., silver or copper), with a thin film of solid electrolyte between them.[3]

Device operation

[edit]

The resistance state of a PMC is controlled by the formation (programming) or dissolution (erasing) of a metallic conductive filament between the two terminals of the cell. A formed filament is a fractal tree like structure.

Filament formation

[edit]

PMC rely on the formation of a metallic conductive filament to transition to a low resistance state (LRS). The filament is created by applying a positive voltage bias (V) to the anode contact (active metal) while grounding the cathode contact (inert metal). The positive bias oxidizes the active metal (M):

M → M+ + e?

The applied bias generates an electric field between the two metal contacts. The ionized (oxidized) metal ions migrate along the electric field toward the cathode contact. At the cathode contact, the metal ions are reduced:

M+ + e? → M

As the active metal deposits on the cathode, the electric field increases between the anode and the deposit. The evolution of the local electric field (E) between the growing filament and the anode can be simplistically related to the following:

where d is the distance between the anode and the top of the growing filament. The filament will grow to connect to the anode within a few nanoseconds.[4] Metal ions will continue to be reduced at the filament until the voltage is removed, broadening the conductive filament and decreasing the resistance of the connection over time. Once the voltage is removed, the conductive filament will remain, leaving the device in a LRS.

The conductive filament may not be continuous, but a chain of electrodeposit islands or nanocrystals.[5] This is likely to prevail at low programming currents (less than 1 μA) whereas higher programming current will lead to a mostly metallic conductor.

Filament dissolution

[edit]

A PMC can be "erased" into a high resistance state (HRS) by applying a negative voltage bias to the anode. The redox process used to create the conductive filament is reversed and the metal ions migrate along the reversed electric field to reduce at the anode contact. With the filament removed, the PMC is analogous to parallel plate capacitor with a high resistance of several MΩ to GΩ between the contacts.

Device read

[edit]

An individual PMC can be read by applying a small voltage across the cell. As long as the applied read voltage is less than both the programming and erasing voltage threshold, the direction of the bias is not significant.

Technology comparison

[edit]

CBRAM vs. metal-oxide ReRAM

[edit]

CBRAM differs from metal-oxide ReRAM in that for CBRAM metal ions dissolve readily in the material between the two electrodes, while for metal-oxides, the material between the electrodes requires a high electric field causing local damage akin to dielectric breakdown, producing a trail of conducting defects (sometimes called a "filament"). Hence for CBRAM, one electrode must provide the dissolving ions, while for metal-oxide RRAM, a one-time "forming" step is required to generate the local damage.

CBRAM vs. NAND Flash

[edit]

The primary form of solid-state non-volatile memory in use is flash memory, which is finding use in most roles formerly filled by hard drives. Flash, however, has problems that led to many efforts to introduce products to replace it.

Flash is based on the floating gate concept, essentially a modified transistor. Conventional flash transistors have three connections, the source, drain and gate. The gate is the essential component of the transistor, controlling the resistance between the source and drain, and thereby acting as a switch. In the floating gate transistor, the gate is attached to a layer that traps electrons, leaving it switched on (or off) for extended periods of time. The floating gate can be re-written by passing a large current through the emitter-collector circuit.

It is this large current that is flash's primary drawback, and for a number of reasons. For one, each application of the current physically degrades the cell, such that the cell will eventually be unwritable. Write cycles on the order of 105 to 106 are typical, limiting flash applications to roles where constant writing is not common. The current also requires an external circuit to generate, using a system known as a charge pump. The pump requires a fairly lengthy charging process so that writing is much slower than reading; the pump also requires much more power. Flash is thus an "asymmetrical" system, much more so than conventional RAM or hard drives.

Another problem with flash is that the floating gate suffers leakage that slowly releases the charge. This is countered through the use of powerful surrounding insulators, but these require a certain physical size in order to be useful and also require a specific physical layout, which is different from the more typical CMOS layouts, which required several new fabrication techniques to be introduced. As flash scales rapidly downward in size the charge leakage increasingly becomes a problem, which led to predictions of its demise. However, massive market investment drove development of flash at rates in excess of Moore's Law, and semiconductor fabrication plants using 30 nm processes were brought online in late 2007.

In contrast to flash, PMC writes with relatively low power and at high speed. The speed is inversely related to the power applied (to a point, there are mechanical limits), so the performance can be tuned.[6]

PMC, in theory, can scale to sizes much smaller than flash, theoretically as small as a few ion widths wide. Copper ions are about 0.75 angstroms,[7] so line widths on the order of nanometers seem possible. PMC was promoted as simpler in layout than flash.[6]

History

[edit]

PMC technology was developed by Michael Kozicki, professor of electrical engineering at Arizona State University in the 1990s.[8][9][10][11][12][13][14] Early experimental PMC systems were based on silver-doped germanium selenide glasses. Work turned to silver-doped germanium sulfide electrolytes and then to the copper-doped germanium sulfide electrolytes.[4] There has been renewed interest in silver-doped germanium selenide devices due to their high, high resistance state. Copper-doped silicon dioxide glass PMC would be compatible with the CMOS fabrication process.

In 1996, Axon Technologies was founded to commercialize the PMC technology. Micron Technology announced work with PMC in 2002.[15] Infineon followed in 2004.[16] PMC technology was licensed to Adesto Technologies by 2007.[6] infineon had spun off memory business to its Qimonda company, which in turn sold it to Adesto Technologies. A DARPA grant was awarded in 2010 for further research.[17]

In 2011, Adesto Technologies allied with the French company Altis Semiconductor for development and manufacturing of CBRAM.[18] In 2013, Adesto introduced a sample CBRAM product in which a 1 megabit part was promoted to replace EEPROM.[19]

NEC developed the so-called nanobridge technology, using Cu2S or tantalumpentoxide as dielectric material. Hereby copper (compatible with copper metallization of the IC) makes the copper to migrate through Cu2S or Ta2O5 making or breaking shorts between the copper and ruthenium electrodes.[20][21][22][23]

The dominant use of this type of memory are space applications, since this type of memory is intrinsically radiation hard.

See also

[edit]

References

[edit]
  1. ^ "Adesto Technologies Trademarks". Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  2. ^ Valov, Ilia; Waser, Rainer; Jameson, John; Kozicki, Michael (June 2011). "Electrochemical metallization memories-fundamentals, applications, prospects". Nanotechnology. 22 (25): 254003. Bibcode:2011Nanot..22y4003V. doi:10.1088/0957-4484/22/25/254003. PMID 21572191. S2CID 250920840.
  3. ^ Michael N. Kozicki; Chakravarthy Gopalan; Murali Balakrishnan; Mira Park; Maria Mitkova (August 20, 2004). "Nonvolatile memory based on solid electrolytes" (PDF). Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference. IEEE. pp. 10–17. doi:10.1109/NVMT.2004.1380792. ISBN 0-7803-8726-0. S2CID 2884270. Archived from the original (PDF) on July 11, 2016. Retrieved April 13, 2017.
  4. ^ a b M.N. Kozicki; M. Balakrishnan; C. Gopalan; C. Ratnakumar; M. Mitkova (November 2005). "Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes". Symposium Non-Volatile Memory Technology 2005. IEEE. pp. 83–89. doi:10.1109/NVMT.2005.1541405. ISBN 0-7803-9408-9. S2CID 45696302.
  5. ^ Muralikrishnan Balakrishnan; Sarath Chandran Puthen Thermadam; Maria Mitkova; Michael N. Kozicki (November 2006). "A Low Power Non-Volatile Memory Element Based on Copper in Deposited Silicon Oxide". 2006 7th Annual Non-Volatile Memory Technology Symposium. IEEE. pp. 111–115. doi:10.1109/NVMT.2006.378887. ISBN 0-7803-9738-X. S2CID 27573769.
  6. ^ a b c Madrigal, Alexis (October 26, 2007). "Terabyte Thumb Drives Made Possible by Nanotech Memory". Wired. Archived from the original on May 11, 2008. Retrieved April 13, 2017.
  7. ^ "Ion Sizes of Common Elements". Archived from the original on 2025-08-06., compare with Co
  8. ^ "Programmable metallization cell structure and method of making same".
  9. ^ "Programmable sub-surface aggregating metallization structure and method of making same".
  10. ^ "Programmable microelectronic devices and method of forming and programming same".
  11. ^ "Programmable conductor memory cell structure and method therefor".
  12. ^ U.S. Patent 7,372,065
  13. ^ "Programmable metallization cell structures including an oxide electrolyte, devices including the structure and method of forming same".
  14. ^ B. Swaroop; W. C. West; G. Martinez; Michael N. Kozicki; L.A. Akers (May 1998). "Programmable current mode Hebbian learning neural network using programmable metallization cell". ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187). Vol. 3. IEEE. pp. 33–36. doi:10.1109/ISCAS.1998.703888. ISBN 0-7803-4455-3. S2CID 61167613.
  15. ^ "Micron Technology Licenses Axon's Programmable Metallization Cell Technology". Press release. January 18, 2002.
  16. ^ "Axon Technologies Corp. Announces Infineon as New Licensee of Programmable Metallization Cell Nonvolatile Memory Technology". Design And Reuse.
  17. ^ "Adesto Technologies Wins DARPA Award to Develop Sub-Threshold Non-Volatile, Embedded CBRAM Memory". Press release. Adesto. November 29, 2010. Retrieved April 13, 2017.
  18. ^ Altis et Adesto Technologies annoncent un partenariat sur les technologies Mémoires CBRAM avancées – Business Wire – published 27 June 2011 - viewed 28 March 2014 Archived 31 March 2014 at the Wayback Machine
  19. ^ "Adesto's CBRAM targets 70 billion dollar market". Nanalyze. July 30, 2013. Retrieved April 13, 2017.
  20. ^ Sakamoto, Toshitsugu; Banno, Naoki; Iguchi, Noriyuki; Kawaura, Hisao; Sunamura, Hiroshi; Fujieda, Shinji; Terabe, Kazuya; Hasegawa, Tsuyoshi; Aono, Masakazu (2007). "A Ta2O5 solid-electrolyte switch with improved reliability": 38–39. doi:10.1109/VLSIT.2007.4339718. S2CID 38195904. {{cite journal}}: Cite journal requires |journal= (help)
  21. ^ "NEC: Nanobridge could build programmable ICs". 23 February 2004. Retrieved 2025-08-06.
  22. ^ "Low-power FPGA based on NanoBridge?technology" (PDF). Retrieved 2025-08-06.
  23. ^ "Semiconductor device".
[edit]
娘惹是什么意思 预授权是什么意思 皮肤细菌感染用什么药 家乡是什么意思 啫啫煲为什么念jue
郑成功是什么朝代的 掌纹多而乱代表什么 逢九年应该注意什么有什么禁忌 一什么鸟窝 晒背有什么好处
男人做噩梦是什么预兆 被男人操是什么感觉 苦瓜不能和什么一起吃 什么马什么什么成语 西瓜汁加什么好喝
高校自主招生是什么意思 女人什么时候是安全期 尿碘是检查什么的 尼维达手表什么档次 五指毛桃长什么样
edm是什么意思hcv8jop6ns0r.cn 吃什么养胃又补胃hcv8jop0ns3r.cn 蔓越莓对女性妇科有什么好处hcv7jop4ns6r.cn 聪明的动物是什么生肖hcv7jop7ns0r.cn 河南专升本考什么hcv8jop5ns5r.cn
人突然晕倒是什么原因引起的tiangongnft.com 耳洞发炎用什么药hcv8jop1ns7r.cn 梦见大蟒蛇是什么征兆hcv8jop3ns2r.cn 冷宫是什么意思hcv9jop2ns5r.cn 阴道口长什么样hcv8jop2ns3r.cn
苹果充电口叫什么hcv9jop0ns9r.cn 京东什么时候有活动hcv8jop5ns0r.cn 菲字五行属什么dayuxmw.com 骞读什么字hcv7jop6ns4r.cn 吃太烫的东西有什么坏处gysmod.com
铁剂是什么hcv8jop3ns8r.cn 拉拉裤是什么hcv9jop7ns5r.cn tct检查什么hcv7jop6ns5r.cn 哥哥的孩子叫我什么hcv9jop1ns1r.cn 右眼皮一直跳是什么预兆luyiluode.com
百度