714什么星座| 晚上尿次数多什么原因| 2021年属什么| 今年什么时候进伏天| 0到3个月的婴儿惊吓吃什么药| 胎芽是什么意思| 7月6日是什么星座| 羊水偏多对胎儿有什么影响| 相得益彰意思是什么| 总掉头发是什么原因女| 杭州灵隐寺求什么最灵| orange是什么颜色| 什么节气开始凉快| 消防队属于什么单位| rh血型阳性什么意思| 1221是什么星座| 全身发冷是什么原因| 为什么土豆不能炒鸡蛋| 锦鲤是什么鱼| 吃什么可以让奶水增多| 控制血糖吃什么食物| 人体缺钾是什么原因引起的| 什么晚霜比较好用| 618是什么星座| 嘴里发苦是什么原因| 金脸银脸代表什么人物| 题词是什么意思| 狡兔三窟是什么意思| 上大厕拉出血是什么原因| 美国人的祖先是什么人| 数字3代表什么意思| 做扩胸运动有什么好处| 缠腰蛇是什么症状图片| pigeon是什么牌子| 办理护照需要什么| 晚安好梦什么意思| DNA是什么意思啊| 因果是什么意思| 每天早上起来口苦是什么原因| 08是什么生肖| 狗狗咳嗽吃什么药好得快| 五毛是什么意思| 女性白带有血丝是什么原因| 静脉曲张溃烂擦什么药| 氟化钠是什么| 卡介苗是预防什么的| 冰激凌和冰淇淋有什么区别| 为什么空腹血糖比餐后血糖高| 无意间是什么意思| 如何知道自己是什么星座| 诺如病毒是什么病| hpf医学是什么意思| 馋肉是身体里缺什么| 玉婷是什么| 什么是九宫格| 脂肪液化是什么意思| 喝酒手掌发红是什么原因| 促甲状腺高会导致什么| 八仙桌是什么生肖| 毛峰是什么茶| 淋巴发炎吃什么药| 小孩子黑眼圈重是什么原因| 无量寿经讲的是什么| 水加人念什么| 二月是什么星座| 工程院院士是什么级别| 古驰是什么牌子| 向内求什么意思| prada是什么牌子| 粘液丝高是什么原因| 低筋面粉能做什么| 2033年是什么年| 七月一是什么星座| 什么是荨麻疹| 脚气用什么药膏效果好| 什么东西能让皮肤变白| 大乌龙是什么意思| 紫色睡莲的花语是什么| cc是什么单位| 甲减吃什么食物好| 细小是什么病什么症状| 巨蟹男和什么座最配对| 血压高压高低压正常是什么原因| 高潮是什么| 孩子为什么会得抽动症| edf是什么意思| 30周做什么检查| mr是什么意思| rj是什么意思| peony是什么意思| 梦到车被撞了什么预兆| 炖羊肉汤放什么调料| 什么是智齿| 乳腺低回声结节是什么意思| 人瘦肚子大是什么原因| 胃炎能吃什么| 什么叫偏光眼镜| 天空为什么是蓝色| 孕妇肚子疼是什么原因| 螯合是什么意思| 烧腊是什么意思| 肾气亏虚吃什么中成药| 心率快是什么原因| 双龙是什么意思| 转氨酶高是什么引起的| 掉头发多是什么原因| 电磁炉上可以放什么锅| 66是什么意思| 什么叫老人临终骨折| 四季豆不能和什么一起吃| 去医院查怀孕挂什么科| 脾胃伏火是什么意思| 老放屁是什么病的征兆| 吃苦瓜有什么好处| 朱砂是什么材质| 鸽子咕咕叫是什么意思| 腿长身子短有什么说法| 弯的是什么意思| ab型血和o型血生的孩子是什么血型| 1934年属什么| 空调开什么模式最凉快| 长期吸烟容易引起什么疾病| 经期吃什么排污血最强| 茶学专业学什么| 什么人不能喝豆浆| 猪脆肠是什么器官| 用酒擦身体有什么好处| 七月份有什么节日| 白血病是什么症状| cm是什么| 五月十六是什么星座| 钠低是什么原因造成的| 拉肚子挂什么科| europe是什么意思| 枫字五行属什么| 交期是什么意思| 无蒂息肉是什么意思| mcu是什么| 性冷淡是什么意思| 凉烟都有什么牌子| 眼袋大用什么方法消除| 五指毛桃长什么样| 热伤风吃什么药| 看肾挂什么科| 尿隐血挂什么科| 腰疼吃什么药效果好| 为什么会梦到蛇| 敏是什么意思| 静息心率是什么意思| 寄生虫是什么意思| 后背有痣代表什么意思| 骨化性肌炎是什么病| 甲硝唑吃多了有什么危害| 中央电视台台长是什么级别| 60年属什么| 毫不逊色的意思是什么| 170是什么号码| 10月1日是什么日子| 发烧吃什么| 心累是什么意思| 梦见割草是什么意思| 疯狗病症状都有什么| 猴戏是什么意思| 瑶柱是什么东西| 胃气上逆有什么好的办法治疗| 房间里放什么阳气旺| 腿疼吃什么药| 什么不导电| 把握时机是指什么生肖| 什么是polo衫| 蓝光是什么| 暴饮暴食会得什么病| 喝什么酒对身体好| 思密达韩语是什么意思| 69年属什么生肖| 宫颈炎是什么原因引起的| 兵工厂属于什么单位| 前列腺是什么东西| 燕窝补什么| 游离前列腺特异性抗原是什么意思| 二月春风似剪刀的上一句是什么| 肠梗阻挂什么科| 肠粘连有什么症状| 短阵房速是什么意思| 梦见钓鱼是什么意思周公解梦| 谷草谷丙低是什么原因| 地级市市长是什么级别| sdnn是什么意思| 薄荷长什么样| 肠胃湿热吃什么药好| 热感冒吃什么药| 梦特娇属于什么档次| 比肩劫财是什么意思| 以备不时之需什么意思| 梦见妖魔鬼怪是什么意思| 女人吃什么补元气最快| 深邃是什么意思| 心率失常是什么意思| 孕晚期宫缩是什么感觉| 鸡皮肤用什么药膏最好| ab型和ab型生的孩子是什么血型| 满月送什么礼物好| 马超属什么生肖| 青青的什么| 为什么夏天热冬天冷| 1ph是什么意思| 执业药师什么时候考试| 浅表性胃炎吃什么药效果好| 四面八方指什么生肖| 阳五行属什么| 颈椎退行性病变是什么意思| 花生不能和什么食物一起吃| 能够握紧的就别放了是什么歌| 哥谭市是什么意思| 潴留性囊肿是什么意思| 劲酒加红牛有什么功能| 妇科千金片主要治什么| 口吐白沫是什么原因| 牙齿为什么会掉| 给猫咪取什么名字好听| 宋字五行属什么| 脚后跟开裂是什么原因| 什么是嘌呤食物| 消防队属于什么单位| 有眼屎是什么原因| 8月份是什么星座| cocoon是什么品牌| 老爷是什么意思| 红楼梦是什么朝代| 为什么有的人晒不黑| 断掌是什么意思| 什么时候不能喷芸苔素| 化气行水是什么意思| 脑供血不足挂什么科| 农历11月11日是什么星座| 粗枝大叶是什么意思| bys是什么药| 擦边球是什么意思| 访谈是什么意思| 艺体生是什么意思| 血管为什么是青色的| 为什么脚上会长鸡眼| 拉肚子吃什么| 暗送秋波是什么意思| 帕金森是什么原因引起的| 脾胃湿热喝什么茶| 武火是什么意思| 叶公好龙的意思是什么| 什么动物最容易摔倒| 结肠炎有什么症状表现| 麝香保心丸治什么病| 黄历是什么意思| 牙齿黑是什么原因| 眼睛为什么不怕冷| 头昏挂什么科| 吃黄精有什么好处| 人肉是什么味道| 花呗是什么意思| 尿路感染为什么会尿血| 今天买什么股票| 蟋蟀是靠什么发声的| 白球比低是什么原因| 魔芋粉是什么做的| 什么是风水| 百度Jump to content

本田拟在美召回2016款思域 停止部分版本销售

From Wikipedia, the free encyclopedia
百度 有了它的存在,地球才有了色彩和光芒、生命露出迹象、幼苗破土而出。

The 100-inch (2.54 m) Hooker reflecting telescope at Mount Wilson Observatory near Los Angeles, USA, used by Edwin Hubble to measure galaxy redshifts and discover the general expansion of the universe.

A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation.[1] Originally, it was an optical instrument using lenses, curved mirrors, or a combination of both to observe distant objects – an optical telescope. Nowadays, the word "telescope" is defined as a wide range of instruments capable of detecting different regions of the electromagnetic spectrum, and in some cases other types of detectors.

The first known practical telescopes were refracting telescopes with glass lenses and were invented in the Netherlands at the beginning of the 17th century. They were used for both terrestrial applications and astronomy.

The reflecting telescope, which uses mirrors to collect and focus light, was invented within a few decades of the first refracting telescope.

In the 20th century, many new types of telescopes were invented, including radio telescopes in the 1930s and infrared telescopes in the 1960s.

Etymology

[edit]

The word telescope was coined in 1611 by the Greek mathematician Giovanni Demisiani for one of Galileo Galilei's instruments presented at a banquet at the Accademia dei Lincei.[2][3] In the Starry Messenger, Galileo had used the Latin term perspicillum. The root of the word is from the Ancient Greek τ?λε, tele 'far' and σκοπε?ν, skopein 'to look or see'; τηλεσκ?πο?, teleskopos 'far-seeing'.[4]

History

[edit]
Replica of possibly the oldest suriving telescope (1609-1640), suspected to be an early "Cannocchiali" refracting telescope by Galileo Galilei.[5]

The earliest existing record of a telescope was a 1608 patent submitted to the government in the Netherlands by Middelburg spectacle maker Hans Lipperhey for a refracting telescope.[6] The actual inventor is unknown but word of it spread through Europe. Galileo heard about it and, in 1609, built his own version, and made his telescopic observations of celestial objects.[7][8]

The idea that the objective, or light-gathering element, could be a mirror instead of a lens was being investigated soon after the invention of the refracting telescope.[9] The potential advantages of using parabolic mirrors—reduction of spherical aberration and no chromatic aberration—led to many proposed designs and several attempts to build reflecting telescopes.[10] In 1668, Isaac Newton built the first practical reflecting telescope, of a design which now bears his name, the Newtonian reflector.[11]

The invention of the achromatic lens in 1733 partially corrected color aberrations present in the simple lens[12] and enabled the construction of shorter, more functional refracting telescopes.[13] Reflecting telescopes, though not limited by the color problems seen in refractors, were hampered by the use of fast tarnishing speculum metal mirrors employed during the 18th and early 19th century—a problem alleviated by the introduction of silver coated glass mirrors in 1857, and aluminized mirrors in 1932.[14] The maximum physical size limit for refracting telescopes is about 1 meter (39 inches), dictating that the vast majority of large optical researching telescopes built since the turn of the 20th century have been reflectors. The largest reflecting telescopes currently have objectives larger than 10 meters (33 feet), and work is underway on several 30–40m designs.[15]

The 20th century also saw the development of telescopes that worked in a wide range of wavelengths from radio to gamma-rays. The first purpose-built radio telescope went into operation in 1937. Since then, a large variety of complex astronomical instruments have been developed.

In space

[edit]

Since the atmosphere is opaque for most of the electromagnetic spectrum, only a few bands can be observed from the Earth's surface. These bands are visible – near-infrared and a portion of the radio-wave part of the spectrum.[16] For this reason there are no X-ray or far-infrared ground-based telescopes as these have to be observed from orbit. Even if a wavelength is observable from the ground, it might still be advantageous to place a telescope on a satellite due to issues such as clouds, astronomical seeing and light pollution.[17]

The disadvantages of launching a space telescope include cost, size, maintainability and upgradability.[18]

Some examples of space telescopes from NASA are the Hubble Space Telescope that detects visible light, ultraviolet, and near-infrared wavelengths, the Spitzer Space Telescope that detects infrared radiation, and the Kepler Space Telescope that discovered thousands of exoplanets.[19] The latest telescope that was launched was the James Webb Space Telescope on December 25, 2021, in Kourou, French Guiana. The Webb telescope detects infrared light.[20]

By electromagnetic spectrum

[edit]
Radio, infrared, visible, ultraviolet, x-ray and gamma ray
Six views of the Crab Nebula at different wavelengths of light

The name "telescope" covers a wide range of instruments. Most detect electromagnetic radiation, but there are major differences in how astronomers must go about collecting light (electromagnetic radiation) in different frequency bands.

As wavelengths become longer, it becomes easier to use antenna technology to interact with electromagnetic radiation (although it is possible to make very tiny antenna). The near-infrared can be collected much like visible light; however, in the far-infrared and submillimetre range, telescopes can operate more like a radio telescope. For example, the James Clerk Maxwell Telescope observes from wavelengths from 3 μm (0.003 mm) to 2000 μm (2 mm), but uses a parabolic aluminum antenna.[21] On the other hand, the Spitzer Space Telescope, observing from about 3 μm (0.003 mm) to 180 μm (0.18 mm) uses a mirror (reflecting optics). Also using reflecting optics, the Hubble Space Telescope with Wide Field Camera 3 can observe in the frequency range from about 0.2 μm (0.0002 mm) to 1.7 μm (0.0017 mm) (from ultra-violet to infrared light).[22]

With photons of the shorter wavelengths, with the higher frequencies, glancing-incident optics, rather than fully reflecting optics are used. Telescopes such as TRACE and SOHO use special mirrors to reflect extreme ultraviolet, producing higher resolution and brighter images than are otherwise possible. A larger aperture does not just mean that more light is collected, it also enables a finer angular resolution.

Telescopes may also be classified by location: ground telescope, space telescope, or flying telescope. They may also be classified by whether they are operated by professional astronomers or amateur astronomers. A vehicle or permanent campus containing one or more telescopes or other instruments is called an observatory.

Radio and submillimeter

[edit]
see caption
Three radio telescopes belonging to the Atacama Large Millimeter Array

Radio telescopes are directional radio antennas that typically employ a large dish to collect radio waves. The dishes are sometimes constructed of a conductive wire mesh whose openings are smaller than the wavelength being observed.

Unlike an optical telescope, which produces a magnified image of the patch of sky being observed, a traditional radio telescope dish contains a single receiver and records a single time-varying signal characteristic of the observed region; this signal may be sampled at various frequencies. In some newer radio telescope designs, a single dish contains an array of several receivers; this is known as a focal-plane array.

Map of the Square Kilometre Array, its membership and setup, which puts together radio telescopes in arrays for interferomrtric observation.

By collecting and correlating signals simultaneously received by several dishes, high-resolution images can be computed. Such multi-dish arrays are known as astronomical interferometers and the technique is called aperture synthesis. The 'virtual' apertures of these arrays are similar in size to the distance between the telescopes. As of 2005, the record array size is many times the diameter of the Earth – using space-based very-long-baseline interferometry (VLBI) telescopes such as the Japanese HALCA (Highly Advanced Laboratory for Communications and Astronomy) VSOP (VLBI Space Observatory Program) satellite.[23]

Aperture synthesis is now also being applied to optical telescopes using optical interferometers (arrays of optical telescopes) and aperture masking interferometry at single reflecting telescopes.

Radio telescopes are also used to collect microwave radiation, which has the advantage of being able to pass through the atmosphere and interstellar gas and dust clouds.

Some radio telescopes such as the Allen Telescope Array are used by programs such as SETI[24] and the Arecibo Observatory to search for extraterrestrial life.[25][26]

Infrared

[edit]

Visible light

[edit]
Dome-like telescope with extruding mirror mount
One of four auxiliary telescopes belong to the Very Large Telescope array

An optical telescope gathers and focuses light mainly from the visible part of the electromagnetic spectrum.[27] Optical telescopes increase the apparent angular size of distant objects as well as their apparent brightness. For the image to be observed, photographed, studied, and sent to a computer, telescopes work by employing one or more curved optical elements, usually made from glass lenses and/or mirrors, to gather light and other electromagnetic radiation to bring that light or radiation to a focal point. Optical telescopes are used for astronomy and in many non-astronomical instruments, including: theodolites (including transits), spotting scopes, monoculars, binoculars, camera lenses, and spyglasses. There are three main optical types:

A Fresnel imager is a proposed ultra-lightweight design for a space telescope that uses a Fresnel lens to focus light.[30][31]

Beyond these basic optical types there are many sub-types of varying optical design classified by the task they perform such as astrographs,[32] comet seekers[33] and solar telescopes.[34]

Ultraviolet

[edit]

Most ultraviolet light is absorbed by the Earth's atmosphere, so observations at these wavelengths must be performed from the upper atmosphere or from space.[35][36]

X-ray

[edit]
see caption
Hitomi telescope's X-ray focusing mirror, consisting of over two hundred concentric aluminium shells

X-rays are much harder to collect and focus than electromagnetic radiation of longer wavelengths. X-ray telescopes can use X-ray optics, such as Wolter telescopes composed of ring-shaped 'glancing' mirrors made of heavy metals that are able to reflect the rays just a few degrees. The mirrors are usually a section of a rotated parabola and a hyperbola, or ellipse. In 1952, Hans Wolter outlined 3 ways a telescope could be built using only this kind of mirror.[37][38] Examples of space observatories using this type of telescope are the Einstein Observatory,[39] ROSAT,[40] and the Chandra X-ray Observatory.[41][42] In 2012 the NuSTAR X-ray Telescope was launched which uses Wolter telescope design optics at the end of a long deployable mast to enable photon energies of 79 keV.[43][44]

Gamma ray

[edit]
The Compton Gamma Ray Observatory released into orbit by the Space Shuttle in 1991

Higher energy X-ray and gamma ray telescopes refrain from focusing completely and use coded aperture masks: the patterns of the shadow the mask creates can be reconstructed to form an image.

X-ray and Gamma-ray telescopes are usually installed on high-flying balloons[45][46] or Earth-orbiting satellites since the Earth's atmosphere is opaque to this part of the electromagnetic spectrum. An example of this type of telescope is the Fermi Gamma-ray Space Telescope which was launched in June 2008.[47][48]

The detection of very high energy gamma rays, with shorter wavelength and higher frequency than regular gamma rays, requires further specialization. Such detections can be made either with the Imaging Atmospheric Cherenkov Telescopes (IACTs) or with Water Cherenkov Detectors (WCDs). Examples of IACTs are H.E.S.S.[49] and VERITAS[50][51] with the next-generation gamma-ray telescope, the Cherenkov Telescope Array (CTA), currently under construction. HAWC and LHAASO are examples of gamma-ray detectors based on the Water Cherenkov Detectors.

A discovery in 2012 may allow focusing gamma-ray telescopes.[52] At photon energies greater than 700 keV, the index of refraction starts to increase again.[52]

Lists of telescopes

[edit]

See also

[edit]

References

[edit]
  1. ^ "Telescope". The American Heritage Dictionary. Archived from the original on 11 March 2020. Retrieved 12 July 2018.
  2. ^ Sobel (2000, p.43), Drake (1978, p.196)
  3. ^ Rosen, Edward, The Naming of the Telescope (1947)
  4. ^ Jack, Albert (2015). They Laughed at Galileo: How the Great Inventors Proved Their Critics Wrong. Skyhorse. ISBN 978-1629147581.
  5. ^ Helden, Albert Van; Dupré, Sven; Gent, Rob van (2010). The Origins of the Telescope. Amsterdam: Amsterdam University Press. ISBN 978-90-6984-615-6. OCLC 760914120. Retrieved 15 April 2025.
  6. ^ galileo.rice.edu The Galileo Project > Science > The Telescope by Al Van Helden: The Hague discussed the patent applications first of Hans Lipperhey of Middelburg, and then of Archived 23 June 2004 at the Wayback MachineJacob Metius of Alkmaar... another citizen of Middelburg, Zacharias Janssen is sometimes associated with the invention
  7. ^ "NASA – Telescope History". www.nasa.gov. Archived from the original on 14 February 2021. Retrieved 11 July 2017.
  8. ^ Loker, Aleck (20 November 2017). Profiles in Colonial History. Aleck Loker. ISBN 978-1-928874-16-4. Archived from the original on 27 May 2016. Retrieved 12 December 2015 – via Google Books.
  9. ^ Watson, Fred (20 November 2017). Stargazer: The Life and Times of the Telescope. Allen & Unwin. ISBN 978-1-74176-392-8. Archived from the original on 2 March 2021. Retrieved 21 November 2020 – via Google Books.
  10. ^ Attempts by Niccolò Zucchi and James Gregory and theoretical designs by Bonaventura Cavalieri, Marin Mersenne, and Gregory among others
  11. ^ Hall, A. Rupert (1992). Isaac Newton: Adventurer in Thought. Cambridge University Press. p. 67. ISBN 9780521566698.
  12. ^ "Chester Moor Hall". Encyclop?dia Britannica. Archived from the original on 17 May 2016. Retrieved 25 May 2016.
  13. ^ Richard Pearson, The History of Astronomy, Astro Publication (2020), p. 281.
  14. ^ Bakich, Michael E. (10 July 2003). "Chapter Two: Equipment". The Cambridge Encyclopedia of Amateur Astronomy (PDF). Cambridge University Press. p. 33. ISBN 9780521812986. Archived from the original (PDF) on 10 September 2008.
  15. ^ Tate, Karl (30 August 2013). "World's Largest Reflecting Telescopes Explained (Infographic)". Space.com. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  16. ^ Stierwalt, Everyday Einstein Sabrina. "Why Do We Put Telescopes in Space?". Scientific American. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  17. ^ Siegel, Ethan. "5 Reasons Why Astronomy Is Better From The Ground Than In Space". Forbes. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  18. ^ Siegel, Ethan. "This Is Why We Can't Just Do All Of Our Astronomy From Space". Forbes. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  19. ^ Brennan, Pat; NASA (26 July 2022). "Missons/Discovery". NASA's exoplanet-hunting space telescopes. Retrieved 17 September 2023.
  20. ^ Space Telescope Science Institution; NASA (19 July 2023). "Quick Facts". Webb Space Telescope. Retrieved 17 September 2023.
  21. ^ ASTROLab du parc national du Mont-Mégantic (January 2016). "The James-Clerk-Maxwell Observatory". Canada under the stars. Archived from the original on 5 February 2011. Retrieved 16 April 2017.
  22. ^ "Hubble's Instruments: WFC3 – Wide Field Camera 3". www.spacetelescope.org. Archived from the original on 12 November 2020. Retrieved 16 April 2017.
  23. ^ "Observatories Across the Electromagnetic Spectrum". imagine.gsfc.nasa.gov. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  24. ^ Dalton, Rex (1 August 2000). "Microsoft moguls back search for ET intelligence". Nature. 406 (6796): 551. doi:10.1038/35020722. ISSN 1476-4687. PMID 10949267. S2CID 4415108.
  25. ^ Tarter, Jill (September 2001). "The Search for Extraterrestrial Intelligence (SETI)". Annual Review of Astronomy and Astrophysics. 39 (1): 511–548. Bibcode:2001ARA&A..39..511T. doi:10.1146/annurev.astro.39.1.511. ISSN 0066-4146. S2CID 261531924. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  26. ^ Nola Taylor Tillman (2 August 2016). "SETI & the Search for Extraterrestrial Life". Space.com. Archived from the original on 17 August 2022. Retrieved 20 August 2022.
  27. ^ Jones, Barrie W. (2 September 2008). The Search for Life Continued: Planets Around Other Stars. Springer Science & Business Media. ISBN 978-0-387-76559-4. Archived from the original on 8 March 2020. Retrieved 12 December 2015.
  28. ^ Lauren Cox (26 October 2021). "Who Invented the Telescope?". Space.com. Archived from the original on 16 July 2013. Retrieved 20 August 2022.
  29. ^ Rupert, Charles G. (1918). "1918PA.....26..525R Page 525". Popular Astronomy. 26: 525. Bibcode:1918PA.....26..525R. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  30. ^ "Telescope could focus light without a mirror or lens". New Scientist. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  31. ^ Koechlin, L.; Serre, D.; Duchon, P. (1 November 2005). "High resolution imaging with Fresnel interferometric arrays: suitability for exoplanet detection". Astronomy & Astrophysics. 443 (2): 709–720. arXiv:astro-ph/0510383. Bibcode:2005A&A...443..709K. doi:10.1051/0004-6361:20052880. ISSN 0004-6361. S2CID 119423063. Archived from the original on 3 December 2021. Retrieved 20 August 2022.
  32. ^ "Celestron Rowe-Ackermann Schmidt Astrograph – Astronomy Now". Archived from the original on 1 October 2022. Retrieved 20 August 2022.
  33. ^ "Telescope (Comet Seeker)". Smithsonian Institution. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  34. ^ Stenflo, J. O. (1 January 2001). "Limitations and Opportunities for the Diagnostics of Solar and Stellar Magnetic Fields". Magnetic Fields Across the Hertzsprung-Russell Diagram. 248: 639. Bibcode:2001ASPC..248..639S. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  35. ^ Allen, C. W. (2000). Allen's astrophysical quantities. Arthur N. Cox (4th ed.). New York: AIP Press. ISBN 0-387-98746-0. OCLC 40473741.
  36. ^ Ortiz, Roberto; Guerrero, Martín A. (28 June 2016). "Ultraviolet emission from main-sequence companions of AGB stars". Monthly Notices of the Royal Astronomical Society. 461 (3): 3036–3046. arXiv:1606.09086. Bibcode:2016MNRAS.461.3036O. doi:10.1093/mnras/stw1547. ISSN 0035-8711.
  37. ^ Wolter, H. (1952), "Glancing Incidence Mirror Systems as Imaging Optics for X-rays", Annalen der Physik, 10 (1): 94–114, Bibcode:1952AnP...445...94W, doi:10.1002/andp.19524450108.
  38. ^ Wolter, H. (1952), "Verallgemeinerte Schwarzschildsche Spiegelsysteme streifender Reflexion als Optiken für R?ntgenstrahlen", Annalen der Physik, 10 (4–5): 286–295, Bibcode:1952AnP...445..286W, doi:10.1002/andp.19524450410.
  39. ^ Giacconi, R.; Branduardi, G.; Briel, U.; Epstein, A.; Fabricant, D.; Feigelson, E.; Forman, W.; Gorenstein, P.; Grindlay, J.; Gursky, H.; Harnden, F. R.; Henry, J. P.; Jones, C.; Kellogg, E.; Koch, D. (June 1979). "The Einstein /HEAO 2/ X-ray Observatory". The Astrophysical Journal. 230: 540. Bibcode:1979ApJ...230..540G. doi:10.1086/157110. ISSN 0004-637X. S2CID 120943949.
  40. ^ "DLR – About the ROSAT mission". DLRARTICLE DLR Portal. Archived from the original on 16 August 2022. Retrieved 20 August 2022.
  41. ^ Schwartz, Daniel A. (1 August 2004). "The development and scientific impact of the chandra x-ray observatory". International Journal of Modern Physics D. 13 (7): 1239–1247. arXiv:astro-ph/0402275. Bibcode:2004IJMPD..13.1239S. doi:10.1142/S0218271804005377. ISSN 0218-2718. S2CID 858689. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  42. ^ Madejski, Greg (2006). "Recent and Future Observations in the X-ray and Gamma-ray Bands: Chandra, Suzaku, GLAST, and NuSTAR". AIP Conference Proceedings. 801 (1): 21–30. arXiv:astro-ph/0512012. Bibcode:2005AIPC..801...21M. doi:10.1063/1.2141828. ISSN 0094-243X. S2CID 14601312. Archived from the original on 28 April 2022. Retrieved 20 August 2022.
  43. ^ "NuStar: Instrumentation: Optics". Archived from the original on 1 November 2010.
  44. ^ Hailey, Charles J.; An, HongJun; Blaedel, Kenneth L.; Brejnholt, Nicolai F.; Christensen, Finn E.; Craig, William W.; Decker, Todd A.; Doll, Melanie; Gum, Jeff; Koglin, Jason E.; Jensen, Carsten P.; Hale, Layton; Mori, Kaya; Pivovaroff, Michael J.; Sharpe, Marton (29 July 2010). Arnaud, Monique; Murray, Stephen S; Takahashi, Tadayuki (eds.). "The Nuclear Spectroscopic Telescope Array (NuSTAR): optics overview and current status". Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray. 7732. SPIE: 197–209. Bibcode:2010SPIE.7732E..0TH. doi:10.1117/12.857654. S2CID 121831705.
  45. ^ Braga, Jo?o; D’Amico, Flavio; Avila, Manuel A. C.; Penacchioni, Ana V.; Sacahui, J. Rodrigo; Santiago, Valdivino A. de; Mattiello-Francisco, Fátima; Strauss, Cesar; Fialho, Márcio A. A. (1 August 2015). "The protoMIRAX hard X-ray imaging balloon experiment". Astronomy & Astrophysics. 580: A108. arXiv:1505.06631. Bibcode:2015A&A...580A.108B. doi:10.1051/0004-6361/201526343. ISSN 0004-6361. S2CID 119222297. Archived from the original on 29 January 2022. Retrieved 20 August 2022.
  46. ^ Brett Tingley (13 July 2022). "Balloon-borne telescope lifts off to study black holes and neutron stars". Space.com. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  47. ^ Atwood, W. B.; Abdo, A. A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D. L.; Barbiellini, G.; Bartelt, J.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bédérède, D. (1 June 2009). "The Large Area Telescope on Thefermi Gamma-Ray Space Telescopemission". The Astrophysical Journal. 697 (2): 1071–1102. arXiv:0902.1089. Bibcode:2009ApJ...697.1071A. doi:10.1088/0004-637X/697/2/1071. ISSN 0004-637X. S2CID 26361978. Archived from the original on 20 August 2022. Retrieved 20 August 2022.
  48. ^ Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R. (13 July 2017). "Search for Extended Sources in the Galactic Plane Using Six Years ofFermi-Large Area Telescope Pass 8 Data above 10 GeV". The Astrophysical Journal. 843 (2): 139. arXiv:1702.00476. Bibcode:2017ApJ...843..139A. doi:10.3847/1538-4357/aa775a. ISSN 1538-4357. S2CID 119187437.
  49. ^ Aharonian, F.; Akhperjanian, A. G.; Bazer-Bachi, A. R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernl?hr, K.; Boisson, C.; Bolz, O.; Borrel, V.; Braun, I.; Breitling, F.; Brown, A. M.; Bühler, R.; Büsching, I. (1 October 2006). "Observations of the Crab nebula with HESS". Astronomy & Astrophysics. 457 (3): 899–915. arXiv:astro-ph/0607333. Bibcode:2006A&A...457..899A. doi:10.1051/0004-6361:20065351. ISSN 0004-6361.
  50. ^ Krennrich, F.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D.; Celik, O.; Cui, W.; Daniel, M.; D'Vali, M.; de la Calle Perez, I.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J. (1 April 2004). "VERITAS: the Very Energetic Radiation Imaging Telescope Array System". New Astronomy Reviews. 2nd VERITAS Symposium on the Astrophysics of Extragalactic Sources. 48 (5): 345–349. Bibcode:2004NewAR..48..345K. doi:10.1016/j.newar.2003.12.050. hdl:10379/9414. ISSN 1387-6473.
  51. ^ Weekes, T. C.; Cawley, M. F.; Fegan, D. J.; Gibbs, K. G.; Hillas, A. M.; Kowk, P. W.; Lamb, R. C.; Lewis, D. A.; Macomb, D.; Porter, N. A.; Reynolds, P. T.; Vacanti, G. (1 July 1989). "Observation of TeV Gamma Rays from the Crab Nebula Using the Atmospheric Cerenkov Imaging Technique". The Astrophysical Journal. 342: 379. Bibcode:1989ApJ...342..379W. doi:10.1086/167599. ISSN 0004-637X. S2CID 119424766. Archived from the original on 11 April 2023. Retrieved 20 August 2022.
  52. ^ a b "Silicon 'prism' bends gamma rays – Physics World". 9 May 2012. Archived from the original on 12 May 2013. Retrieved 15 May 2012.

Further reading

[edit]
[edit]
尿酸高是什么原因导致的 白包是什么意思 白蛋白偏低是什么意思 义务兵是什么意思 曲苑杂坛为什么停播
逐是什么意思 意大利买什么包便宜 举重若轻什么意思 三生石是什么意思 为什么一来月经就头疼
人得了猫藓用什么药膏 尿酸高是什么问题 沈阳有什么好玩的地方 菠菜和什么不能一起吃 人为什么要刷牙
俞是什么意思 手指甲变薄是什么原因 月经不调吃什么药调理最好 吗啡是什么药 重建是什么意思
尿潜血是什么原因hcv8jop5ns3r.cn sop是什么意思hcv8jop8ns4r.cn 不晨勃是什么原因hcv8jop3ns9r.cn 查乳房挂什么科hcv8jop4ns5r.cn 下午头晕是什么原因引起的hcv9jop2ns4r.cn
家的意义是什么hcv8jop8ns0r.cn 红参和人参有什么区别hcv8jop5ns1r.cn 精子对女性有什么好处hcv9jop8ns0r.cn 流鼻血吃什么好hcv7jop7ns4r.cn 胆在什么位置图片hcv8jop1ns0r.cn
葡萄糖氯化钠注射作用是什么hcv8jop6ns2r.cn 尿路结石有什么症状hlguo.com 纳囊是什么妇科病hcv9jop6ns4r.cn 人间尤物什么意思hcv8jop3ns8r.cn 窗口是什么意思hcv8jop9ns0r.cn
碧血是什么意思hcv8jop9ns2r.cn 害怕的近义词是什么hcv9jop3ns5r.cn 正月十八是什么星座hcv7jop6ns1r.cn 主管药师是什么职称hcv8jop5ns8r.cn 三亚是什么海zhongyiyatai.com
百度