喝什么茶去火排毒祛痘| 粘液阳性是什么意思| 湿气是什么东西| 跳蚤咬了擦什么药| 动容什么意思| 肌电图是检查什么的| 舒张压偏高是什么原因| 落地成盒什么意思| 凉拌菜用什么醋最好| 冠脉钙化是什么意思| camper是什么牌子| 幽门螺杆菌是一种什么病| 地贫是什么| 为什么同房后小腹疼痛| 右后背疼什么原因| hcg什么意思| 空气栓塞取什么卧位| 不易是什么意思| 棒棒糖是什么意思| 次日是什么意思| 表妹是什么关系| 拔智齿后吃什么恢复快| 狗狗吃胡萝卜有什么好处| 鸡和什么属相相冲| 属羊的和什么属相不合| 解脲支原体阳性吃什么药最好| daily是什么意思| 两边太阳胀痛什么原因引起的| 古代的天花是现代的什么病| 毛囊炎吃什么药| 尿等待吃什么药最好| 葵水是什么| 增强免疫力吃什么维生素| 梦见前女友是什么预兆| au999是什么金| 支气管激发试验阴性是什么意思| 洗礼是什么意思| 胃疼吃什么药好的快| 一月十七是什么星座| 吃党参有什么好处| 月经时间长是什么原因| 喵星人是什么意思| 室性早搏吃什么药| 耳鸣用什么药治疗效果最好| 经常吃紧急避孕药有什么危害| 小孩胃疼吃什么药好| 正常人尿液是什么颜色| pose是什么意思| 凉拖鞋什么材质的好| 随访复查什么意思| 防晒衣什么品牌好| 什么前什么后| messi是什么意思| 步兵什么意思| 来例假可以吃什么水果| 日照有什么好吃的| 农历7月20日是什么星座| g是什么计量单位| 铉是什么意思| 水痘不能吃什么| 甘油三酯高吃什么食物降得快| 男人梦到蛇预示着什么| 喝黄芪水有什么副作用| 表哥的儿子叫我什么| 为什么晚上睡不着| 姚字五行属什么| 小腿疼是什么原因| 胆囊结石用什么药好| 蛇冲什么生肖| 巴斯光年是什么意思| dym是什么意思| 内科查什么| 心血管病人吃什么最好| 黑脸代表什么| 见红是什么样的| 什么让生活更美好作文| 人流后需要注意什么| 椎间盘轻度膨出是什么意思| 1976年是什么命| 躲春是什么意思| 两融是什么意思| 药石是什么意思| 沙龙会是什么意思| 承上启下是什么意思| 土豆和什么不能一起吃| 喝酒拉肚子吃什么药| 淋巴在什么部位| 虫字旁的字和什么有关| 胃不好吃什么水果最好| 死猪不怕开水烫是什么意思| 怀孕会有什么反应| 1989年属什么的| 娘酒是什么酒| 帮凶是什么意思| 血常规能检查出什么| 一心一意是什么生肖| 猪鬃为什么是战略物资| 荻是什么意思| 过年吃什么| 入睡困难吃什么药效果最好| mr检查是什么| 生物闹钟是什么意思| 宿醉是什么意思| 为什么射精是流出来的| ch是什么牌子| 7月17什么星座| 什么是私人会所| 为什么会得艾滋病| 妨子痣是什么意思| ono是什么意思| 无奇不有是什么意思| 什么车最长脑筋急转弯| 血小板计数偏低是什么意思| 橙色五行属什么| 再创佳绩是什么意思| 梦见盖新房子是什么意思| 百鸟归巢什么意思| 转氨酶高吃什么食物降得快| 血常规异常是什么意思| 死了妻子的男人叫什么| 十一点半是什么时辰| 农垦局是什么性质单位| 鱼鳞病是什么| 盐酸达泊西汀片是什么药| 常吃大蒜有什么好处| 灸石门为什么会不孕| 月嫂下户是什么意思| 关节咔咔响是什么原因| 月经不正常去医院检查什么项目| 白砂糖是什么糖| 肛门下坠吃什么药| 小孩肺炎吃什么药| pussy是什么意思| 枸杞泡茶有什么功效| 任正非用的什么手机| 商纣王姓什么| 属马的和什么属相最配| ercp是什么检查| 被蚂蚁咬了用什么药| 梦见看房子是什么预兆| 清净心是什么意思| 什么是单亲家庭| 几又念什么| 生蛇是什么原因引起的| 手腕痛什么原因| 老黄瓜炖什么好吃| 角的大小与什么有关与什么无关| 风水轮流转什么意思| 什么的向日葵| 坏血病是什么| 梦见吐痰是什么意思| 防微杜渐是什么意思| 条件反射是什么意思| 挂了是什么意思| 胃酸是什么症状| 11月出生是什么星座| 麦子什么时候成熟| 不在服务区是什么意思| 什么样的情况下需要做肠镜| 几成是什么意思| 霍金什么时候去世的| 塔利班是什么| 年上年下是什么意思| 国防科技大学毕业是什么军衔| 君王是什么意思| 煮牛骨头放什么调料| 什么让生活更美好作文| 孕妇生气对胎儿有什么影响| 孕妇的尿液有什么用途| 鼠妇是什么| 大名鼎鼎是什么意思| 9月10日是什么节| 造影检查是什么意思| sdeer是什么牌子| am是什么| 失眠有什么特效药| m是什么单位| 嗣子是什么意思| 盐酸莫西沙星主治什么| 北京市副市长什么级别| 黑色碳素笔是什么笔| mmp是什么意思| 新晋是什么意思| 左手大拇指麻木是什么原因| 不加大念什么| 什么叫粳米| 马杀鸡是什么意思| 阿玛尼属于什么档次| 正官正印是什么意思| 什么是闰年什么是平年| 痣的位置代表什么| 助力油是什么油| 86岁属什么生肖| 孩子呕吐吃什么药| 尿微肌酐比值高是什么情况| 亚是什么意思| 脸部爱出油是什么原因| 九月九日是什么日子| 照烧是什么意思| 踮脚尖有什么好处| 单核细胞高是什么原因| 莳花弄草是什么意思| 血虚吃什么中成药最好| 小兔子吃什么食物| 秦始皇为什么叫祖龙| 教唆是什么意思| 山楂搭配什么泡水喝好| 系带是什么| 乏力没精神容易疲劳是什么原因| 一夜白头是什么原因| 激光脱毛对身体有什么危害| 威化是什么意思| 富士康是做什么的| 颈部淋巴结肿大是什么原因| 减脂吃什么| 黑苦荞茶适合什么人喝| 影响是什么意思| 鞭炮笋学名叫什么| 鳄梨是什么水果| 血小板太高会导致什么| 前列腺增大是什么意思| 姑妈的老公叫什么| 牛鬼蛇神指什么生肖| 53年属什么| 铁锈色痰见于什么病| 尿道感染用什么消炎药| 牛筋草用什么除草剂| 牙签肉是什么肉| 过敏是什么意思| http什么意思| 肾炎吃什么食物好| 童子是什么意思| 达瓦里氏什么意思| 十月一是什么星座| 扒拉是什么意思| 小孩风寒感冒吃什么药| 怎么知道自己五行缺什么| 胸痛是什么病的前兆| 什么叫梅毒| 小什么| 虫草花有什么功效和作用| 头发大把大把的掉是什么原因| 飞蚊症是什么原因引起的| 当归有什么作用和功效| 睾丸疝气有什么症状| 男生留什么发型好看| mr是什么检查项目| 牛字五行属什么| 为什么不建议小孩吃罗红霉素| 猪脚炖什么| 阴道吹气是什么原因| 雀舌是什么茶| 心率失常是什么意思| 脚踏一星是什么命| 睡美人叫什么名字| 洗衣机什么牌子的好| 狗肉和什么一起炖最佳| 什么花走着开| 包皮过长挂什么科| 钾偏低是什么原因| 手足口疫苗叫什么名字| 胸闷是什么原因引起的| 什么是跑马| 九七年属什么| 百度Jump to content

首创集团发行境外绿色美元和人民币企业债券

From Wikipedia, the free encyclopedia
Internet history timeline
百度 那些与母亲的合影或视频,家风家教家训的故事里,藏着一个个家庭的独特秉性。

Early research and development:

Merging the networks and creating the Internet:

Commercialization, privatization, broader access leads to the modern Internet:

Examples of Internet services:

The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

IP has the task of delivering packets from the source host to the destination host solely based on the IP addresses in the packet headers. For this purpose, IP defines packet structures that encapsulate the data to be delivered. It also defines addressing methods that are used to label the datagram with source and destination information. IP was the connectionless datagram service in the original Transmission Control Program introduced by Vint Cerf and Bob Kahn in 1974, which was complemented by a connection-oriented service that became the basis for the Transmission Control Protocol (TCP). The Internet protocol suite is therefore often referred to as TCP/IP.

The first major version of IP, Internet Protocol version 4 (IPv4), is the dominant protocol of the Internet. Its successor is Internet Protocol version 6 (IPv6), which has been in increasing deployment on the public Internet since around 2006.[1]

Function

[edit]
Encapsulation of application data carried by UDP to a link protocol frame

The Internet Protocol is responsible for addressing host interfaces, encapsulating data into datagrams (including fragmentation and reassembly) and routing datagrams from a source host interface to a destination host interface across one or more IP networks.[2] For these purposes, the Internet Protocol defines the format of packets and provides an addressing system.

Each datagram has two components: a header and a payload. The IP header includes a source IP address, a destination IP address, and other metadata needed to route and deliver the datagram. The payload is the data that is transported. This method of nesting the data payload in a packet with a header is called encapsulation.

IP addressing entails the assignment of IP addresses and associated parameters to host interfaces. The address space is divided into subnets, involving the designation of network prefixes. IP routing is performed by all hosts, as well as routers, whose main function is to transport packets across network boundaries. Routers communicate with one another via specially designed routing protocols, either interior gateway protocols or exterior gateway protocols, as needed for the topology of the network.[3]

Addressing methods

[edit]
Routing schemes
Unicast

Broadcast

Multicast

Anycast

There are four principal addressing methods in the Internet Protocol:

  • Unicast delivers a message to a single specific node using a one-to-one association between a sender and destination: each destination address uniquely identifies a single receiver endpoint.
  • Broadcast delivers a message to all nodes in the network using a one-to-all association; a single datagram (or packet) from one sender is routed to all of the possibly multiple endpoints associated with the broadcast address. The network automatically replicates datagrams as needed to reach all the recipients within the scope of the broadcast, which is generally an entire network subnet.
  • Multicast delivers a message to a group of nodes that have expressed interest in receiving the message using a one-to-many-of-many or many-to-many-of-many association; datagrams are routed simultaneously in a single transmission to many recipients. Multicast differs from broadcast in that the destination address designates a subset, not necessarily all, of the accessible nodes.
  • Anycast delivers a message to any one out of a group of nodes, typically the one nearest to the source using a one-to-one-of-many[4] association where datagrams are routed to any single member of a group of potential receivers that are all identified by the same destination address. The routing algorithm selects the single receiver from the group based on which is the nearest according to some distance or cost measure.

Version history

[edit]
A timeline for the development of the transmission control Protocol TCP and Internet Protocol IP
First Internet demonstration, linking the ARPANET, PRNET, and SATNET on November 22, 1977

In May 1974, the Institute of Electrical and Electronics Engineers (IEEE) published a paper entitled "A Protocol for Packet Network Intercommunication".[5] The paper's authors, Vint Cerf and Bob Kahn, described an internetworking protocol for sharing resources using packet switching among network nodes. A central control component of this model was the Transmission Control Program that incorporated both connection-oriented links and datagram services between hosts. The monolithic Transmission Control Program was later divided into a modular architecture consisting of the Transmission Control Protocol and User Datagram Protocol at the transport layer and the Internet Protocol at the internet layer. The model became known as the Department of Defense (DoD) Internet Model and Internet protocol suite, and informally as TCP/IP.

The following Internet Experiment Note (IEN) documents describe the evolution of the Internet Protocol into the modern version of IPv4:[6]

  • IEN 2 Comments on Internet Protocol and TCP (August 1977) describes the need to separate the TCP and Internet Protocol functionalities (which were previously combined). It proposes the first version of the IP header, using 0 for the version field.
  • IEN 26 A Proposed New Internet Header Format (February 1978) describes a version of the IP header that uses a 1-bit version field.
  • IEN 28 Draft Internetwork Protocol Description Version 2 (February 1978) describes IPv2.
  • IEN 41 Internetwork Protocol Specification Version 4 (June 1978) describes the first protocol to be called IPv4. The IP header is different from the modern IPv4 header.
  • IEN 44 Latest Header Formats (June 1978) describes another version of IPv4, also with a header different from the modern IPv4 header.
  • IEN 54 Internetwork Protocol Specification Version 4 (September 1978) is the first description of IPv4 using the header that would become standardized in 1980 as RFC 760.
  • IEN 80
  • IEN 111
  • IEN 123
  • IEN 128/RFC 760 (1980)

IP versions 1 to 3 were experimental versions, designed between 1973 and 1978.[7] Versions 2 and 3 supported variable-length addresses ranging between 1 and 16 octets (between 8 and 128 bits).[8] An early draft of version 4 supported variable-length addresses of up to 256 octets (up to 2048 bits)[9] but this was later abandoned in favor of a fixed-size 32-bit address in the final version of IPv4. This remains the dominant internetworking protocol in use in the Internet Layer; the number 4 identifies the protocol version, carried in every IP datagram. IPv4 is defined in RFC 791 (1981).

Version number 5 was used by the Internet Stream Protocol, an experimental streaming protocol that was not adopted.[7]

The successor to IPv4 is IPv6. IPv6 was a result of several years of experimentation and dialog during which various protocol models were proposed, such as TP/IX (RFC 1475), PIP (RFC 1621) and TUBA (TCP and UDP with Bigger Addresses, RFC 1347). Its most prominent difference from version 4 is the size of the addresses. While IPv4 uses 32 bits for addressing, yielding c. 4.3 billion (4.3×109) addresses, IPv6 uses 128-bit addresses providing c. 3.4×1038 addresses. Although adoption of IPv6 has been slow, as of January 2023, most countries in the world show significant adoption of IPv6,[10] with over 41% of Google's traffic being carried over IPv6 connections.[11]

The assignment of the new protocol as IPv6 was uncertain until due diligence assured that IPv6 had not been used previously.[12] Other Internet Layer protocols have been assigned version numbers,[13] such as 7 (IP/TX), 8 and 9 (historic). Notably, on April 1, 1994, the IETF published an April Fools' Day RfC about IPv9.[14] IPv9 was also used in an alternate proposed address space expansion called TUBA.[15] A 2004 Chinese proposal for an IPv9 protocol appears to be unrelated to all of these, and is not endorsed by the IETF.

IP version numbers

[edit]

As the version number is carried in a 4-bit field, only numbers 0–15 can be assigned.

IP version Description Year Status
0 Internet Protocol, pre-v4 N/A Reserved[16]
1 Experimental version 1973 Obsolete
2 Experimental version 1977 Obsolete
3 Experimental version 1978 Obsolete
4 Internet Protocol version 4 (IPv4)[17] 1981 Active
5 Internet Stream Protocol (ST) 1979 Obsolete; superseded by ST-II or ST2
Internet Stream Protocol (ST-II or ST2)[18] 1987 Obsolete; superseded by ST2+
Internet Stream Protocol (ST2+) 1995 Obsolete
6 Simple Internet Protocol (SIP) N/A Obsolete; merged into IPv6 in 1995[16]
Internet Protocol version 6 (IPv6)[19] 1995 Active
7 TP/IX The Next Internet (IPv7)[20] 1993 Obsolete[21]
8 P Internet Protocol (PIP)[22] 1994 Obsolete; merged into SIP in 1993
9 TCP and UDP over Bigger Addresses (TUBA) 1992 Obsolete[23]
IPv9 1994 April Fools' Day joke[24]
Chinese IPv9 2004 Abandoned
10–14 N/A N/A Unassigned
15 Version field sentinel value N/A Reserved

Reliability

[edit]

The design of the Internet protocol suite adheres to the end-to-end principle, a concept adapted from the CYCLADES project. Under the end-to-end principle, the network infrastructure is considered inherently unreliable at any single network element or transmission medium and is dynamic in terms of the availability of links and nodes. No central monitoring or performance measurement facility exists that tracks or maintains the state of the network. For the benefit of reducing network complexity, the intelligence in the network is located in the end nodes.

As a consequence of this design, the Internet Protocol only provides best-effort delivery and its service is characterized as unreliable. In network architectural parlance, it is a connectionless protocol, in contrast to connection-oriented communication. Various fault conditions may occur, such as data corruption, packet loss and duplication. Because routing is dynamic, meaning every packet is treated independently, and because the network maintains no state based on the path of prior packets, different packets may be routed to the same destination via different paths, resulting in out-of-order delivery to the receiver.

All fault conditions in the network must be detected and compensated by the participating end nodes. The upper layer protocols of the Internet protocol suite are responsible for resolving reliability issues. For example, a host may buffer network data to ensure correct ordering before the data is delivered to an application.

IPv4 provides safeguards to ensure that the header of an IP packet is error-free. A routing node discards packets that fail a header checksum test. Although the Internet Control Message Protocol (ICMP) provides notification of errors, a routing node is not required to notify either end node of errors. IPv6, by contrast, operates without header checksums, since current link layer technology is assumed to provide sufficient error detection.[25][26]

[edit]

The dynamic nature of the Internet and the diversity of its components provide no guarantee that any particular path is actually capable of, or suitable for, performing the data transmission requested. One of the technical constraints is the size of data packets possible on a given link. Facilities exist to examine the maximum transmission unit (MTU) size of the local link and Path MTU Discovery can be used for the entire intended path to the destination.[27]

The IPv4 internetworking layer automatically fragments a datagram into smaller units for transmission when the link MTU is exceeded. IP provides re-ordering of fragments received out of order.[28] An IPv6 network does not perform fragmentation in network elements, but requires end hosts and higher-layer protocols to avoid exceeding the path MTU.[29]

The Transmission Control Protocol (TCP) is an example of a protocol that adjusts its segment size to be smaller than the MTU. The User Datagram Protocol (UDP) and ICMP disregard MTU size, thereby forcing IP to fragment oversized datagrams.[30]

Security

[edit]

During the design phase of the ARPANET and the early Internet, the security aspects and needs of a public, international network were not adequately anticipated. Consequently, many Internet protocols exhibited vulnerabilities highlighted by network attacks and later security assessments. In 2008, a thorough security assessment and proposed mitigation of problems was published.[31] The IETF has been pursuing further studies.[32]

See also

[edit]

References

[edit]
  1. ^ The Economics of Transition to Internet Protocol version 6 (IPv6) (Report). OECD Digital Economy Papers. OECD. 2025-08-06. doi:10.1787/5jxt46d07bhc-en. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  2. ^ Charles M. Kozierok, The TCP/IP Guide, archived from the original on 2025-08-06, retrieved 2025-08-06
  3. ^ "IP Technologies and Migration — EITC". www.eitc.org. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  4. ^ Go?cień, Ró?a; Walkowiak, Krzysztof; Klinkowski, Miros?aw (2025-08-06). "Tabu search algorithm for routing, modulation and spectrum allocation in elastic optical network with anycast and unicast traffic". Computer Networks. 79: 148–165. doi:10.1016/j.comnet.2014.12.004. ISSN 1389-1286.
  5. ^ Cerf, V.; Kahn, R. (1974). "A Protocol for Packet Network Intercommunication" (PDF). IEEE Transactions on Communications. 22 (5): 637–648. doi:10.1109/TCOM.1974.1092259. ISSN 1558-0857. Archived (PDF) from the original on 2025-08-06. Retrieved 2025-08-06. The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
  6. ^ "Internet Experiment Note Index". www.rfc-editor.org. Retrieved 2025-08-06.
  7. ^ a b Stephen Coty (2025-08-06). "Where is IPv1, 2, 3, and 5?". Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  8. ^ Postel, Jonathan B. (February 1978). "Draft Internetwork Protocol Specification Version 2" (PDF). RFC Editor. IEN 28. Retrieved 6 October 2022. Archived 16 May 2019 at the Wayback Machine
  9. ^ Postel, Jonathan B. (June 1978). "Internetwork Protocol Specification Version 4" (PDF). RFC Editor. IEN 41. Retrieved 11 February 2024. Archived 16 May 2019 at the Wayback Machine
  10. ^ Strowes, Stephen (4 Jun 2021). "IPv6 Adoption in 2021". RIPE Labs. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  11. ^ "IPv6". Google. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  12. ^ Mulligan, Geoff. "It was almost IPv7". O'Reilly. Archived from the original on 5 July 2015. Retrieved 4 July 2015.
  13. ^ "IP Version Numbers". Internet Assigned Numbers Authority. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  14. ^ RFC 1606: A Historical Perspective On The Usage Of IP Version 9. April 1, 1994.
  15. ^ Ross Callon (June 1992). TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet Addressing and Routing. doi:10.17487/RFC1347. RFC 1347.
  16. ^ a b Jeff Doyle; Jennifer Carroll (2006). Routing TCP/IP. Vol. 1 (2 ed.). Cisco Press. p. 8. ISBN 978-1-58705-202-6.
  17. ^ J. Postel, ed. (September 1981). INTERNET PROTOCOL - DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION. IETF. doi:10.17487/RFC0791. STD 5. RFC 791. IEN 128, 123, 111, 80, 54, 44, 41, 28, 26. Internet Standard 5. Obsoletes RFC 760. Updated by RFC 1349, 2474 and 6864.
  18. ^ L. Delgrossi; L. Berger, eds. (August 1995). Internet Stream Protocol Version 2 (ST2) Protocol Specification - Version ST2+. Network Working Group. doi:10.17487/RFC1819. RFC 1819. Historic. Obsoletes RFC 1190 and IEN 119.
  19. ^ S. Deering; R. Hinden (July 2017). Internet Protocol, Version 6 (IPv6) Specification. Internet Engineering Task Force. doi:10.17487/RFC8200. STD 86. RFC 8200. Internet Standard 86. Obsoletes RFC 2460.
  20. ^ R. Ullmann (June 1993). TP/IX: The Next Internet. Network Working Group. doi:10.17487/RFC1475. RFC 1475. Historic. Obsoleted by RFC 6814.
  21. ^ C. Pignataro; F. Gont (November 2012). Formally Deprecating Some IPv4 Options. Internet Engineering Task Force. doi:10.17487/RFC6814. ISSN 2070-1721. RFC 6814. Proposed Standard. Obsoletes RFC 1385, 1393, 1475 and 1770.
  22. ^ P. Francis (May 1994). Pip Near-term Architecture. Network Working Group. doi:10.17487/RFC1621. RFC 1621. Historic.
  23. ^ Ross Callon (June 1992). TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet Addressing and Routing. Network Working Group. doi:10.17487/RFC1347. RFC 1347. Historic.
  24. ^ J. Onions (1 April 1994). A Historical Perspective On The Usage Of IP Version 9. Network Working Group. doi:10.17487/RFC1606. RFC 1606. Informational. This is an April Fools' Day Request for Comments.
  25. ^ RFC 1726 section 6.2
  26. ^ RFC 2460
  27. ^ Rishabh, Anand (2012). Wireless Communication. S. Chand Publishing. ISBN 978-81-219-4055-9. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  28. ^ Siyan, Karanjit. Inside TCP/IP, New Riders Publishing, 1997. ISBN 1-56205-714-6
  29. ^ Bill Cerveny (2025-08-06). "IPv6 Fragmentation". Arbor Networks. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  30. ^ Parker, Don (2 November 2010). "Basic Journey of a Packet". Symantec. Symantec. Archived from the original on 20 January 2022. Retrieved 4 May 2014.
  31. ^ Fernando Gont (July 2008), Security Assessment of the Internet Protocol (PDF), CPNI, archived from the original (PDF) on 2025-08-06
  32. ^ F. Gont (July 2011). Security Assessment of the Internet Protocol version 4. doi:10.17487/RFC6274. RFC 6274.
[edit]
银杏果长什么样 康宽杀虫剂能杀什么虫 1007是什么星座 婴儿胀气是什么原因 伟字五行属什么
吴佳尼为什么嫁马景涛 什么茶降血糖 北芪与黄芪有什么区别 排卵试纸一深一浅说明什么 率性是什么意思
伦字五行属什么 化学键是什么 骨癌的前兆是什么症状 喝酒前喝什么不容易醉又不伤胃 牙周炎用什么药
2001是什么年 鸭嘴鱼吃什么食物 牛肉饺子馅配什么蔬菜 斩金念什么 硬性要求是什么意思
肾有问题挂什么科hcv7jop6ns5r.cn 检查肝脏挂什么科hcv9jop3ns1r.cn 月嫂下户是什么意思hcv8jop0ns5r.cn 广东话扑街是什么意思520myf.com 蜂蜜吃有什么好处hcv8jop6ns4r.cn
月经为什么会提前hcv9jop5ns7r.cn 南昌有什么好玩的hcv7jop6ns2r.cn 梦到被蛇咬是什么意思hcv8jop4ns3r.cn 澳大利亚属于什么气候hcv9jop5ns6r.cn 与五行属什么hcv8jop6ns9r.cn
大眼角痒是什么原因yanzhenzixun.com 老鹰的天敌是什么hcv8jop5ns1r.cn 什么是粗粮食物有哪些hcv9jop4ns6r.cn 发物都有什么hcv8jop4ns7r.cn 肾衰竭五期是什么意思hcv9jop5ns2r.cn
吃地屈孕酮片有什么副作用weuuu.com 为什么会有肾结石wuhaiwuya.com 纳米丝是什么面料hcv7jop6ns4r.cn 233是什么意思hcv8jop1ns5r.cn twin什么意思hcv9jop2ns2r.cn
百度