什么是单反相机| 什么书比较好| 台风是什么意思| 甲状腺手术后可以吃什么水果| 小腿经常抽筋是什么原因| 脚烧热是什么原因| 梦见自己在飞是什么征兆| 最大的哺乳动物是什么| 什么叫大数据| 儿童牙龈肿痛吃什么药| 老人适合吃什么水果| 植脂末是什么| 阴道干涩是什么原因| 体制外是什么意思| 唯我独尊指什么生肖| 德行是什么意思| 朝鲜冷面是什么面| 什么快递比较快| 经常自言自语是什么原因| 廉租房和公租房有什么区别| 92年的属什么| 肌肉损伤吃什么药| 施华洛世奇水晶是什么材质| 透支是什么意思| 做梦梦到已故的亲人是什么意思| 颈椎病是什么原因引起的| 尿什么味道| 金鸡独立是什么意思| 南京都有什么大学| 皮肤一碰就红是什么原因| 小河边有什么| 七月六号是什么星座| 5月24号是什么星座| 观音菩萨原名叫什么名| 湿疹要注意什么| 为什么喝绞股蓝会死亡| 小孩抽动症是什么引起的| 不宁腿综合症是什么原因引起的| 喜大普奔是什么意思| 吃什么减肥最好最快| 什么是大健康产业| 甲亢吃什么盐| cheese什么意思| 肝血管瘤挂什么科| 中暑吃什么好| 经常看手机有什么危害| 什么是国企单位| 肺部气肿吃什么药能治好| 全身痒是什么病| 甲沟炎是什么原因引起的| 奶油霜是什么| 气滞血瘀吃什么药| 土字旁的字有什么| 精是什么意思| 肉桂是什么味道| 不堪一击是什么意思| 五月二十二是什么星座| 避孕套什么牌子好用又安全| 报道是什么意思| 父母都是o型血孩子是什么血型| 血小板下降是什么原因| 常吃南瓜有什么好处和坏处| 运动前吃什么| gt是什么意思| 羊肉与什么食物相克| 梦见表姐是什么意思| 家庭烧烤准备什么食材| 唾液酸苷酶阳性什么意思| 畏光是什么意思| 半边脸肿是什么原因| 大陆人去香港需要什么证件| 橄榄绿是什么颜色| 绿豆汤是什么颜色| 曙光什么意思| 定坤丹适合什么人吃| 飞机选座位什么位置好| 荔枝代表什么寓意| 什么叫精索静脉曲张啊| 脾胃科主要看什么| 正畸和矫正有什么区别| 中年危机是什么意思| 户籍信息是什么| 绞股蓝长什么样| 6月18日什么星座| 尼古丁是什么东西| 颈椎引起的头晕是什么症状| 胸为什么一大一小| 两个c是什么牌子| 谋生是什么意思| 胃疼可以吃什么食物| 为什么咳嗽| pin是什么意思| 冬阴功是什么意思| 开怀什么意思| 人生感悟是什么意思| 男占258女占369什么意思| 水解奶粉是什么意思| 考试吃什么早餐| 网球大满贯什么意思| 丁胺卡那又叫什么药名| 过敏挂什么科| 什么的雨| 吃什么补充酪氨酸酶| 肝囊性灶是什么意思| 希字五行属什么| 血脂稠吃什么药| 心率90左右意味着什么| 腔梗吃什么药| 梦到死去的亲人是什么意思| 霉菌性阴道炎吃什么药| 嘉靖为什么不杀海瑞| 唐氏综合症是什么意思| 梦房子倒塌什么预兆| 煮玉米为什么要放盐| 虎头虎脑是什么生肖| 胎儿宫内缺氧孕妇有什么症状| 什么叫外阴白斑| 忠武路演员是什么意思| 士人是什么意思| 减肥可以吃什么零食| 查电话号码打什么电话| 贫血吃什么药| 兰花用什么土栽培最好| 屁多还臭是什么原因| 龟头责是什么意思| 住院带什么必备物品| 抱薪救火是什么意思| 国家发改委主任什么级别| 腰椎间盘突出和膨出有什么区别| 舌边有齿痕是什么原因| 国家专项是什么意思| 巡礼是什么意思| 为什么手心总是出汗| 傻白甜什么意思| 床品是什么意思| 7月30日是什么星座| 孩子咳嗽能吃什么水果| 康乃馨的花语代表什么| 辣椒炒什么好吃| 筋膜炎吃什么药最有效| 女人是男人的什么| 嗳气是什么原因| 398是什么意思| 争奇斗艳的斗是什么意思| 虾仁不能和什么食物一起吃| 玉米吃多了有什么坏处| 胃疼吃什么食物| 前列腺液是什么| 女性绝经期在什么年龄是正常的| 鸭子什么时候下蛋| zoom什么意思| 五级职员是什么级别| 杀子痣是什么意思| 肝不好看什么科| 水过鸭背是什么意思| 粉玫瑰适合送什么人| 肝回声细密是什么意思| 化橘红是什么东西| 血压高什么不能吃| 礼物送什么| 北京五行属什么| 受虐倾向是什么| 十一月二十四是什么星座| 八字中的印是什么意思| 纯牛奶什么时候喝最好| 可是什么意思| fox什么意思| 女人熬夜吃什么抗衰老| 为什么说成也萧何败也萧何| 低盐饮食有利于预防什么疾病| 工业氧气和医用氧气有什么区别| 孕妇晚餐吃什么比较好| 思密达韩语是什么意思| 白细胞低吃什么药| 为什么二楼比三楼好| 墨鱼和鱿鱼有什么区别| 天蝎座什么象星座| 小孩子注意力不集中是什么原因| od什么意思| 打呼噜去医院挂什么科| 胃痉挛有什么症状| 结晶体是什么意思| 不什么不什么的成语| 身上痒是什么原因引起的| 奇异果是什么水果| 天才是指什么生肖| 做肌电图挂什么科| 南京是什么省| mia是什么意思| 什么时候血压最高| 吃什么可以提高血小板| 液基薄层细胞制片术是检查什么的| 结余是什么意思| 养生吃什么最好| 合肥原名叫什么名字| 什么是腺瘤| 眼睛疼吃什么药| 圣罗兰属于什么档次| 脾肾阳虚吃什么中成药最好| 空调买什么牌子的好| 咽喉肿痛吃什么药好| mpa是什么意思呀| 褶皱是什么意思| 什么树没有叶子| 七月份适合种什么菜| 血氧饱和度是什么| 水为什么会结冰| 什么车子寸步难行脑筋急转弯| 黑木耳不能和什么一起吃| 姐妹是什么生肖| 脉搏细是什么原因| 低迷是什么意思| 耳鸣吃什么药最好| 水瓶座后面是什么星座| 什么流淌| 广东菜心是什么菜| 荷尔蒙是什么| 七月四号是什么星座| 寒热错杂吃什么中成药| 什么牌子的冰箱好用又省电| 粗人是什么意思| 大眼角痒用什么眼药水| 潮热盗汗是什么意思| 科目三考什么内容| 大姨妈来吃什么水果好| 滑石粉有什么作用| 蝉联的意思是什么| 芥末是什么植物| 淋巴细胞偏低什么意思| 欲钱知吃月饼是什么生肖| 慢性病卡有什么用| 蛞蝓是什么动物| 氪金什么意思| 四大美女是什么生肖| 天眼是什么意思| 滑膜增厚是什么意思| 小鸭子吃什么| 海盐是什么盐| 阳历一月份是什么星座| 医学生规培是什么意思| 严什么的态度| 贫血是什么原因造成的| 罗衣是什么意思| 极化是什么意思| 支气管炎吃什么药最好| 看好你是什么意思| 香港什么时候回归| 口水分泌过多是什么原因| 脚扭伤挂什么科| 肾盂肾炎吃什么药| 什么蜘蛛有毒| 肩袖损伤用什么药| 宿醉是什么意思| 葫芦什么时候种最好| 为什么一直想睡觉| b超跟彩超有什么区别| 囊内可见卵黄囊是什么意思| 强直性脊柱炎吃什么药| 扁桃体发炎是什么原因| 肝病吃什么药好得快| 益母草长什么样| gm眼镜是什么牌子| 脚麻是什么原因| 什么的雪花| 百度Jump to content

海南--青海频道--人民网

From Wikipedia, the free encyclopedia
The first 15,000 partial sums of 0 + 1 ? 2 + 3 ? 4 + ... The graph is situated with positive integers to the right and negative integers to the left.
百度 电影版更加入《异形》、《超人》、《》、《回到未来》、《鬼娃恰吉》、《机动战士高达》、《光明战士阿基拉》等,增添更多观影乐趣,只要你的见识够广,眼睛够锐利,大约二十余家厂商参与了本片创作,你可以慢慢找。

In mathematics, 1 ? 2 + 3 ? 4 + ··· is an infinite series whose terms are the successive positive integers, given alternating signs. Using sigma summation notation the sum of the first m terms of the series can be expressed as

The infinite series diverges, meaning that its sequence of partial sums, (1, ?1, 2, ?2, 3, ...), does not tend towards any finite limit. Nonetheless, in the mid-18th century, Leonhard Euler wrote what he admitted to be a paradoxical equation:

A rigorous explanation of this equation would not arrive until much later. Starting in 1890, Ernesto Cesàro, émile Borel and others investigated well-defined methods to assign generalized sums to divergent series—including new interpretations of Euler's attempts. Many of these summability methods easily assign to 1 ? 2 + 3 ? 4 + ... a "value" of 1/4. Cesàro summation is one of the few methods that do not sum 1 ? 2 + 3 ? 4 + ..., so the series is an example where a slightly stronger method, such as Abel summation, is required.

The series 1 ? 2 + 3 ? 4 + ... is closely related to Grandi's series 1 ? 1 + 1 ? 1 + .... Euler treated these two as special cases of the more general sequence 1 ? 2n + 3n ? 4n + ..., where n = 1 and n = 0 respectively. This line of research extended his work on the Basel problem and leading towards the functional equations of what are now known as the Dirichlet eta function and the Riemann zeta function.

Divergence

[edit]

The series' terms (1, ?2, 3, ?4, ...) do not approach 0; therefore 1 ? 2 + 3 ? 4 + ... diverges by the term test. Divergence can also be shown directly from the definition: an infinite series converges if and only if the sequence of partial sums converges to a limit, in which case that limit is the value of the infinite series. The partial sums of 1 ? 2 + 3 ? 4 + ... are:[1]

1,

1 ? 2 = ?1,
1 ? 2 + 3 = 2,
1 ? 2 + 3 ? 4 = ?2,
1 ? 2 + 3 ? 4 + 5 = 3,
1 ? 2 + 3 ? 4 + 5 ? 6 = ?3,

...

The sequence of partial sums shows that the series does not converge to a particular number: for any proposed limit x, there exists a point beyond which the subsequent partial sums are all outside the interval [x?1, x+1], so 1 ? 2 + 3 ? 4 + ... diverges.

The partial sums include every integer exactly once—even 0 if one counts the empty partial sum—and thereby establishes the countability of the set of integers.[2]

Heuristics for summation

[edit]

Stability and linearity

[edit]

Since the terms 1, ?2, 3, ?4, 5, ?6, ... follow a simple pattern, the series 1 ? 2 + 3 ? 4 + ... can be manipulated by shifting and term-by-term addition to yield a numerical value. If it can make sense to write s = 1 ? 2 + 3 ? 4 + ... for some ordinary number s, the following manipulations argue for s = 14:[3]

Adding 4 copies of 1 ? 2 + 3 ? 4 + ..., using only shifts and term-by-term addition, yields 1. The left side and right side each demonstrates two copies of 1 ? 2 + 3 ? 4 + ... adding to 1 ? 1 + 1 ? 1 + ....

So .

Although 1 ? 2 + 3 ? 4 + ... does not have a sum in the usual sense, the equation s = 1 ? 2 + 3 ? 4 + ... = 14 can be supported as the most natural answer if such a sum is to be defined. A generalized definition of the "sum" of a divergent series is called a summation method or summability method. There are many different methods and it is desirable that they share some properties of ordinary summation. What the above manipulations actually prove is the following: Given any summability method that is linear and stable and sums the series 1 ? 2 + 3 ? 4 + ..., the sum it produces is 14.[4] Furthermore, since

such a method must also sum Grandi's series as 1 ? 1 + 1 ? 1 + ... = 12.[4]

Cauchy product

[edit]

In 1891, Ernesto Cesàro expressed hope that divergent series would be rigorously brought into calculus, pointing out, "One already writes (1 ? 1 + 1 ? 1 + ...)2 = 1 ? 2 + 3 ? 4 + ... and asserts that both the sides are equal to 14."[5] For Cesàro, this equation was an application of a theorem he had published the previous year, which is the first theorem in the history of summable divergent series.[1] The details on his summation method are below; the central idea is that 1 ? 2 + 3 ? 4 + ... is the Cauchy product (discrete convolution) of 1 ? 1 + 1 ? 1 + ... with 1 ? 1 + 1 ? 1 + ....

The Cauchy product of two infinite series is defined even when both of them are divergent. In the case where an = bn = (?1)n, the terms of the Cauchy product are given by the finite diagonal sums

The product series is then

Thus a summation method that respects the Cauchy product of two series — and assigns to the series 1 ? 1 + 1 ? 1 + ... the sum 1/2 — will also assign to the series 1 ? 2 + 3 ? 4 + ... the sum 1/4. With the result of the previous section, this implies an equivalence between summability of 1 ? 1 + 1 ? 1 + ... and 1 ? 2 + 3 ? 4 + ... with methods that are linear, stable, and respect the Cauchy product.

Cesàro's theorem is a subtle example. The series 1 ? 1 + 1 ? 1 + ... is Cesàro-summable in the weakest sense, called (C, 1)-summable, while 1 ? 2 + 3 ? 4 + ... requires a stronger form of Cesàro's theorem,[6] being (C, 2)-summable. Since all forms of Cesàro's theorem are linear and stable,[7] the values of the sums are as calculated above.

Specific methods

[edit]

Cesàro and H?lder

[edit]
Data about the (H, 2) sum of 14

To find the (C, 1) Cesàro sum of 1 ? 2 + 3 ? 4 + ..., if it exists, one needs to compute the arithmetic means of the partial sums of the series. The partial sums are:

1, ?1, 2, ?2, 3, ?3, ...,

and the arithmetic means of these partial sums are:

1, 0, 23, 0, 35, 0, 47, ....

This sequence of means does not converge, so 1 ? 2 + 3 ? 4 + ... is not Cesàro summable.

There are two well-known generalizations of Cesàro summation: the conceptually simpler of these is the sequence of (H, n) methods for natural numbers n. The (H, 1) sum is Cesàro summation, and higher methods repeat the computation of means. Above, the even means converge to 12, while the odd means are all equal to 0, so the means of the means converge to the average of 0 and 12, namely 14.[8] So 1 ? 2 + 3 ? 4 + ... is (H, 2) summable to 14.

The "H" stands for Otto H?lder, who first proved in 1882 what mathematicians now think of as the connection between Abel summation and (H, n) summation; 1 ? 2 + 3 ? 4 + ... was his first example.[9] The fact that 14 is the (H, 2) sum of 1 ? 2 + 3 ? 4 + ... guarantees that it is the Abel sum as well; this will also be proved directly below.

The other commonly formulated generalization of Cesàro summation is the sequence of (C, n) methods. It has been proven that (C, n) summation and (H, n) summation always give the same results, but they have different historical backgrounds. In 1887, Cesàro came close to stating the definition of (C, n) summation, but he gave only a few examples. In particular, he summed 1 ? 2 + 3 ? 4 + ..., to 14 by a method that may be rephrased as (C, n) but was not justified as such at the time. He formally defined the (C, n) methods in 1890 in order to state his theorem that the Cauchy product of a (C, n)-summable series and a (C, m)-summable series is (C, m + n + 1)-summable.[10]

Abel summation

[edit]
Some partials of 1 ? 2x + 3x2 + ...; 1/(1 + x)2; and limits at 1

In a 1749 report, Leonhard Euler acknowledges that the series diverges but prepares to sum it anyway:

... when it is said that the sum of this series 1 ? 2 + 3 ? 4 + 5 ? 6 etc. is 14, that must appear paradoxical. For by adding 100 terms of this series, we get ?50, however, the sum of 101 terms gives +51, which is quite different from 14 and becomes still greater when one increases the number of terms. But I have already noticed at a previous time, that it is necessary to give to the word sum a more extended meaning ...[11]

Euler proposed a generalization of the word "sum" several times. In the case of 1 ? 2 + 3 ? 4 + ..., his ideas are similar to what is now known as Abel summation:

... it is no more doubtful that the sum of this series 1 ? 2 + 3 ? 4 + 5 etc. is 14; since it arises from the expansion of the formula 1(1+1)2, whose value is incontestably 14. The idea becomes clearer by considering the general series 1 ? 2x + 3x2 ? 4x3 + 5x4 ? 6x5 + &c. that arises while expanding the expression 1(1+x)2, which this series is indeed equal to after we set x = 1.[12]

There are many ways to see that, at least for absolute values |x| < 1, Euler is right in that One can take the Taylor expansion of the right-hand side, or apply the formal long division process for polynomials. Starting from the left-hand side, one can follow the general heuristics above and try multiplying by (1 + x) twice or squaring the geometric series 1 ? x + x2 ? .... Euler also seems to suggest differentiating the latter series term by term.[13]

In the modern view, the generating function 1 ? 2x + 3x2 ? 4x3 + ... does not define a function at x = 1, so that value cannot simply be substituted into the resulting expression. Since the function is defined for all |x| < 1, one can still take the limit as x approaches 1, and this is the definition of the Abel sum:

Euler and Borel

[edit]
Euler summation to 12 ? 14. Positive values are shown in white, negative values are shown in brown, and shifts and cancellations are shown in green.

Euler applied another technique to the series: the Euler transform, one of his own inventions. To compute the Euler transform, one begins with the sequence of positive terms that makes up the alternating series—in this case 1, 2, 3, 4, .... The first element of this sequence is labeled a0.

Next one needs the sequence of forward differences among 1, 2, 3, 4, ...; this is just 1, 1, 1, 1, .... The first element of this sequence is labeled Δa0. The Euler transform also depends on differences of differences, and higher iterations, but all the forward differences among 1, 1, 1, 1, ... are 0. The Euler transform of 1 ? 2 + 3 ? 4 + ... is then defined as

In modern terminology, one says that 1 ? 2 + 3 ? 4 + ... is Euler summable to 14.

The Euler summability also implies Borel summability, with the same summation value, as it does in general.[14]

Separation of scales

[edit]

Saichev and Woyczyński arrive at 1 ? 2 + 3 ? 4 + ... = 14 by applying only two physical principles: infinitesimal relaxation and separation of scales. To be precise, these principles lead them to define a broad family of "φ-summation methods", all of which sum the series to 14:

  • If φ(x) is a function whose first and second derivatives are continuous and integrable over (0, ∞), such that φ(0) = 1 and the limits of φ(x) and (x) at +∞ are both 0, then[15]

This result generalizes Abel summation, which is recovered by letting φ(x) = exp(?x). The general statement can be proved by pairing up the terms in the series over m and converting the expression into a Riemann integral. For the latter step, the corresponding proof for 1 ? 1 + 1 ? 1 + ... applies the mean value theorem, but here one needs the stronger Lagrange form of Taylor's theorem.

Generalization

[edit]
Excerpt from p. 233 of the E212 — Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum. Euler sums similar series, c. 1755.

The threefold Cauchy product of 1 ? 1 + 1 ? 1 + ... is 1 ? 3 + 6 ? 10 + ..., the alternating series of triangular numbers; its Abel and Euler sum is 18.[16] The fourfold Cauchy product of 1 ? 1 + 1 ? 1 + ... is 1 ? 4 + 10 ? 20 + ..., the alternating series of tetrahedral numbers, whose Abel sum is 116.

Another generalization of 1 ? 2 + 3 ? 4 + ... in a slightly different direction is the series 1 ? 2n + 3n ? 4n + ... for other values of n. For positive integers n, these series have the following Abel sums:[17] where Bn are the Bernoulli numbers. For even n, this reduces to which can be interpreted as stating that negative even values of the Riemann zeta function are zero. This sum became an object of particular ridicule by Niels Henrik Abel in 1826:

Divergent series are on the whole devil's work, and it is a shame that one dares to found any proof on them. One can get out of them what one wants if one uses them, and it is they which have made so much unhappiness and so many paradoxes. Can one think of anything more appalling than to say that

0 = 1 ? 22n + 32n ? 42n + etc.

where n is a positive number. Here's something to laugh at, friends.[18]

Cesàro's teacher, Eugène Charles Catalan, also disparaged divergent series. Under Catalan's influence, Cesàro initially referred to the "conventional formulas" for 1 ? 2n + 3n ? 4n + ... as "absurd equalities", and in 1883 Cesàro expressed a typical view of the time that the formulas were false but still somehow formally useful. Finally, in his 1890 Sur la multiplication des séries, Cesàro took a modern approach starting from definitions.[19]

The series are also studied for non-integer values of n; these make up the Dirichlet eta function. Part of Euler's motivation for studying series related to 1 ? 2 + 3 ? 4 + ... was the functional equation of the eta function, which leads directly to the functional equation of the Riemann zeta function. Euler had already become famous for finding the values of these functions at positive even integers (including the Basel problem), and he was attempting to find the values at the positive odd integers (including Apéry's constant) as well, a problem that remains elusive today. The eta function in particular is easier to deal with by Euler's methods because its Dirichlet series is Abel summable everywhere; the zeta function's Dirichlet series is much harder to sum where it diverges.[20] For example, the counterpart of 1 ? 2 + 3 ? 4 + ... in the zeta function is the non-alternating series 1 + 2 + 3 + 4 + ..., which has deep applications in modern physics but requires much stronger methods to sum.

See also

[edit]

References

[edit]
  1. ^ a b Hardy 1949, p. 8.
  2. ^ Beals 2004, p. 23.
  3. ^ Hardy 1949, p. 6 presents this derivation in conjunction with evaluation of Grandi's series 1 ? 1 + 1 ? 1 + ....
  4. ^ a b Hardy 1949, p. 6.
  5. ^ Ferraro 1999, p. 130.
  6. ^ Hardy 1949, p. 3; Weidlich 1950, pp. 52–55.
  7. ^ Alabdulmohsin 2018.
  8. ^ Hardy 1949, p. 9. For the full details of the calculation, see Weidlich 1950, pp. 17–18.
  9. ^ Ferraro 1999, p. 118; Tucciarone 1973, p. 10. Ferraro criticizes Tucciarone's explanation (p. 7) of how H?lder himself thought of the general result, but the two authors' explanations of H?lder's treatment of 1 ? 2 + 3 ? 4 + ... are similar.
  10. ^ Ferraro 1999, pp. 123–128.
  11. ^ Euler, Willis & Osler 2006, p. 2. Although the paper was written in 1749, it was not published until 1768.
  12. ^ Euler, Willis & Osler 2006, pp. 3, 25.
  13. ^ For example, Lavine 1994, p. 23 advocates long division but does not carry it out; Vretblad 2003, p. 231 calculates the Cauchy product. Euler's advice is vague; see Euler, Willis & Osler 2006, pp. 3, 26. John Baez even suggests a category-theoretic method involving multiply pointed sets and the quantum harmonic oscillator. Baez, John C. Euler's Proof That 1 + 2 + 3 + ... = ?1/12 (PDF). Archived 2025-08-14 at the Wayback Machine math.ucr.edu (December 19, 2003). Retrieved on March 11, 2007.
  14. ^ Shawyer & Watson 1994, p. 32.
  15. ^ Saichev & Woyczyński 1996, pp. 260–264.
  16. ^ Kline 1983, p. 313.
  17. ^ Hardy 1949, p. 3; Knopp 1990, p. 491.
  18. ^ Grattan-Guinness 1970, p. 80. See Markusevi? 1967, p. 48, for a different translation from the original French; the tone remains the same.
  19. ^ Ferraro 1999, pp. 120–128.
  20. ^ Euler, Willis & Osler 2006, pp. 20–25.

Bibliography

[edit]
  • Alabdulmohsin, Ibrahim M. (2018). "Analytic summability theory". Summability Calculus. Springer International Publishing. pp. 65–91. doi:10.1007/978-3-319-74648-7_4. ISBN 978-3-319-74647-0.
  • Beals, Richard (2004). Analysis: An Introduction. Cambridge UP. ISBN 978-0-521-60047-7.
  • Davis, Harry F. (May 1989). Fourier Series and Orthogonal Functions. Dover. ISBN 978-0-486-65973-2.
  • Euler, Leonhard; Willis, Lucas; Osler, Thomas J. (2006). "Translation with notes of Euler's paper: Remarks on a beautiful relation between direct as well as reciprocal power series". The Euler Archive. Retrieved 2025-08-14. Originally published as Euler, Leonhard (1768). "Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques". Mémoires de l'Académie des Sciences de Berlin. 17: 83–106.
  • Ferraro, Giovanni (June 1999). "The First Modern Definition of the Sum of a Divergent Series: An Aspect of the Rise of 20th Century Mathematics". Archive for History of Exact Sciences. 54 (2): 101–135. doi:10.1007/s004070050036. S2CID 119766124.
  • Grattan-Guinness, Ivor (1970). The development of the foundations of mathematical analysis from Euler to Riemann. MIT Press. ISBN 978-0-262-07034-8.
  • Hardy, G. H. (1949). Divergent Series. Clarendon Press. LCCN 49005496. MR 0030620. OCLC 808787. 2nd Ed. published by Chelsea Pub. Co., 1991. LCCN 91-75377. ISBN 0-8284-0334-1.
  • Kline, Morris (November 1983). "Euler and Infinite Series". Mathematics Magazine. 56 (5): 307–314. CiteSeerX 10.1.1.639.6923. doi:10.2307/2690371. JSTOR 2690371.
  • Knopp, Konrad (1990). Theory and Application of Infinite Series. New York: Dover Publications. ISBN 0486661652. LCCN 89071388.
  • Lavine, Shaughan (1994). Understanding the Infinite. Harvard UP. ISBN 978-0-674-92096-5.
  • Markusevi?, Aleksej Ivanovi? (1967). Series: fundamental concepts with historical exposition (English translation of 3rd revised edition (1961) in Russian ed.). Delhi, India: Hindustan Pub. Corp. p. 176. LCCN sa68017528. OCLC 729238507. Author also known as A. I. Markushevich and Alekse? Ivanovitch Markouchevitch. Also published in Boston, Mass by Heath with OCLC 474456247. Additionally, OCLC 208730, OCLC 487226828.
  • Saichev, A. I.; Woyczyński, W. A. (1996). Distributions in the Physical and Engineering Sciences, Volume 1. Birkhaüser. ISBN 978-0-8176-3924-2.
  • Shawyer, Bruce; Watson, Bruce (1994). Borel's Methods of Summability: Theory and Application. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York. ISBN 0-19-853585-6. MR 1320266.
  • Tucciarone, John (January 1973). "The development of the theory of summable divergent series from 1880 to 1925". Archive for History of Exact Sciences. 10 (1–2): 1–40. doi:10.1007/BF00343405. S2CID 121888821.
  • Vretblad, Anders (2003). Fourier Analysis and Its Applications. Springer. ISBN 978-0-387-00836-3.
  • Weidlich, John E. (June 1950). Summability methods for divergent series. Stanford M.S. theses. OCLC 38624384.

肌酐高是什么问题 什么东西泡脚减肥 西洋参可以和什么一起泡水喝 鼻窦炎是什么样子的 捧杀是什么意思
1969属什么生肖 上不来气吃什么药好使 三头六臂开过什么生肖 报单什么意思 反驳是什么意思
中风是什么原因引起的 阴部瘙痒用什么药 心理活动是什么意思 hpv是什么症状 口腔上火了吃什么降火最快
颈椎钙化是什么意思 促甲状腺激素低是什么原因 五月26日是什么星座 琥珀色是什么颜色 西林是什么药
去医院看嘴唇挂什么科hcv9jop0ns5r.cn 复方对乙酰氨基酚片是什么药hcv8jop4ns6r.cn 乳糖醇是什么hcv9jop8ns3r.cn 6月适合种什么菜hcv8jop8ns0r.cn 腹痛拉稀什么原因hcv8jop6ns3r.cn
麻疹是什么病hcv9jop7ns1r.cn 印度人属于什么人种hcv8jop1ns2r.cn 结婚五周年是什么婚hcv8jop4ns7r.cn 烫伤忌口不能吃什么wmyky.com 膝盖疼痛用什么药hcv8jop6ns1r.cn
供给侧改革什么意思hcv7jop9ns6r.cn 双肺多发结节是什么意思hcv9jop1ns0r.cn 幽门螺旋杆菌有什么症状hcv9jop6ns7r.cn 黑色上衣搭配什么颜色裤子好看hcv8jop1ns6r.cn 什么地听cl108k.com
90岁叫什么hcv9jop1ns5r.cn 一生无虞是什么意思hcv9jop5ns4r.cn 三氯蔗糖是什么hcv7jop5ns3r.cn 尿检3个加号什么意思hcv9jop2ns9r.cn 固本培元什么意思hcv9jop2ns6r.cn
百度