防晒衣的面料是什么| 蔚姓氏读什么| 兔死狐悲指什么生肖| 三岁宝宝喝什么奶粉比较好| 宝宝喜欢趴着睡觉是什么原因| 女性更年期在什么年龄段| 颈椎病吃什么药效果好| 有什么黄色网站| 牙龈发炎用什么药| 龙头烤是什么鱼| 什么的宝石| 岔气是什么意思| 排卵期同房后要注意什么| 消症是什么意思| 存款准备金率下调意味着什么| 怀孕可以吃什么水果| 晚饭吃什么最健康| 淋巴结是什么东西| 叕什么意思| 3a是什么意思| 顺产收腹带什么时候用最佳| 护肝片什么时候吃最好| 做凉粉用什么淀粉最好| 卜卦是什么意思| 盎司是什么单位| 花期是什么意思| 尿检能查出什么| 撇清关系是什么意思| 梦见打死蛇是什么意思| 后脑两侧痛是什么原因| 真菌感染有什么症状| 给男朋友买什么礼物比较好| 海马是什么动物| 马代表什么数字| 小鸡仔吃什么| 梅花三弄是什么意思| 为什么会有狐臭| 昱五行属性是什么| 头不自觉的晃动是什么原因| 作祟是什么意思| 美国人的祖先是什么人| 1989年出生的是什么命| 彩蛋是什么意思| 月经量多是什么原因引起的| 心脏支架是什么材料做的| 牛皮糖是什么意思| 梦见青蛇是什么预兆| 哎是什么意思| 人体缺钙吃什么补最快| 晨尿茶色是什么原因| 老鼠爱吃什么食物| 医技是什么专业| 氯化钾主治什么病| 男人遗精是什么原因造成的| 夫妻都是a型血孩子是什么血型| 糖尿病人可以吃什么水果| 五心烦热失眠手脚心发热吃什么药| 不什么下什么的成语| 刘玄德属什么生肖| 移徙是什么意思| 吃斋是什么意思| 牙龈上火肿痛吃什么药| 看血脂高挂什么科| 学士学位证书有什么用| eoa是什么意思| 一直咳嗽吃什么药| 才高八斗是什么意思| 血压过低有什么危害| 做梦笑出声是什么预兆| 天热头疼吃什么药| 上火吃什么可以降火| 痒是什么原因引起的| 梦见吵架是什么意思| 12月23日是什么星座| 什么叫环比什么叫同比| 停职是什么意思| 属蛇的本命佛是什么佛| 墨西哥说什么语言| 经常发烧是什么原因| 垒是什么意思| 为难的难是什么意思| 胃热吃什么药效果好| 尿酸高适合吃什么水果| 指甲长得快说明什么| 射手座属于什么象星座| 冠状沟是什么位置| 什么网站可以看毛片| 2.4号是什么星座| 心病有什么症状| 海葡萄是什么| 身体出虚汗是什么原因| 一岁宝宝口臭是什么原因引起的| 白细胞高是什么原因| 头发容易油是什么原因| 我们都没错只是不适合是什么歌| 偏旁部首是什么意思| 猫头鹰吃什么| 女人有腰窝意味着什么| 什么人容易得心梗| 烤箱能做什么美食| 自得其乐是什么意思| 铄字五行属什么| 鱼疗是什么鱼| 女人体检都查什么项目| 排卵期在什么时候| 低gi是什么意思| 口干舌燥是什么病| 为什么有的女人欲太强| 大快朵颐是什么意思| 痰湿是什么意思| 背痛是什么原因引起的| 什么蘑菇有毒| 3月份是什么星座| 香菇炒什么好吃| 了加一笔是什么字| 什么是耦合| 牙齿痛用什么药| cue什么意思| 七八年属什么生肖| 三三两两是什么生肖| 肚脐右边疼是什么原因| 七月四号是什么星座| 刘邦为什么怕吕后| 太虚幻境是什么意思| 除草剂中毒有什么症状| 眩晕挂号挂什么科| gpr是什么意思| 梦见很多肉是什么意思| 霍山石斛有什么作用| 下野是什么意思| 泥淖是什么意思| 暗的反义词是什么| 为什么感冒药吃了想睡觉| 星辰大海什么意思| 人流后什么叫重体力活| 耳鸣用什么药| 什么叫肺部纤维灶| 壁虎的尾巴有什么作用| 月忌日是什么意思| 姨妈的老公叫什么| 候场是什么意思| 神经疼吃什么药| fe是什么意思| 心率90左右意味着什么| 户籍地是什么| 头疼吃什么药| kumpoo是什么牌子| 籽骨出现意味着什么| 维酶素片搭配什么药治萎缩性胃炎| 脚底出汗什么原因| 免疫力低有什么症状| 治痛风吃什么药| 孕妇吃什么好对胎儿好三个月前期| 什么蔬菜补血| 蜱虫长什么样子| 智齿是什么样的| 大象鼻子为什么那么长| 宫颈锥切后需要注意什么| 暑假是什么时候| 发条是什么意思| 什么的脸| 嘴巴里起泡是什么原因| 果冻是什么意思| 喉咙不舒服是什么原因| 梦见跟妈妈吵架是什么意思| 眩晕是什么意思| beside是什么意思| 梅花什么时候开放| 生眼屎是什么原因引起的| 青春永驻什么意思| 开边珠牛皮是什么意思| 仓鼠吃什么食物最好| 什么是重心| 拔牙吃什么消炎药| 莲子心有什么作用| 什么地回答| 尿糖阳性是什么意思| 导演是干什么的| 睡眠不好会引起什么症状| 健康证都查什么| 明太鱼是什么鱼| 霉菌性阴道炎是什么症状| 一个月大的小狗吃什么| 灌注是什么意思| 周易和易经有什么区别| 吃什么水果降火最快| 昆字五行属什么| 高送转是什么意思| 蛇鼠一窝是什么生肖| 屁很臭是什么原因| 宋朝前面是什么朝代| 什么是辅酶q10| 74年属虎是什么命| 肠子粘连有什么办法解决| 长溃疡是缺什么维生素| touch是什么牌子| 立秋是什么时候| 头部出汗多吃什么药| 宗气是什么意思| 头晕为什么做眼震检查| 在是什么意思| 长公主是皇上的什么人| 感冒发烧挂什么科室| 机关单位和事业单位有什么区别| 富察氏是什么旗| 嫡孙是什么意思| 百合病是什么病| 好女人的标准是什么| cdc什么意思| 1951年属什么生肖| 彷徨是什么意思| 宫颈炎吃什么药好得快| 梦见水代表什么| 右耳朵耳鸣是什么原因| 什么是墨菲定律| 鱼生是什么| 火疖子吃什么药| 血酮体高代表什么| 雷蒙欣氨麻美敏片是什么药| 左侧上颌窦炎是什么病| 小孩子腿疼是什么原因| 属马的贵人属相是什么| 卵黄囊回声是什么意思| 动脉硬化吃什么| 5月15日是什么星座| 跑步配速什么意思| 1级高血压是什么意思| 朋友圈发女朋友照片配什么文字| 迁坟有什么讲究和忌讳| 身份证照片穿什么颜色衣服| 瑞士为什么这么有钱| 它们是指什么| 梦见小男孩是什么预兆| 吃烧烤后吃什么水果可以帮助排毒| 疑难杂症是什么意思| 气虚吃什么中药| 什么不足| 形单影只什么意思| 骨质疏松症有什么症状| 蝉蜕是什么| 牛油是什么油| 手脱皮用什么药| 肝火旺盛失眠吃什么药| 敏感水体是什么意思| 2002是什么年| 药流有什么危害| 知行合一是什么意思| 晕轮效应是什么意思| 护手霜什么牌子的效果好| 羊悬筋是什么样子图片| 京东pop是什么意思| 人生的意义是什么| 皮肤软组织感染用什么消炎药| 木兮是什么意思| 肯德基为什么叫kfc| 下肢血液循环不好吃什么药| 为什么肚子总是胀胀的| 牛油果什么时候吃最好| 血少一撇念什么| 妙哉妙哉是什么意思| 什么是创造性思维| generic是什么意思| 冬眠的动物有什么| 运交华盖是什么意思| 百度Jump to content

QORVO®引进业界最小和最节能的WI-FI前端..

From Wikipedia, the free encyclopedia
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph
百度 他同时强调,普京的首要任务是内政,“这是我们存在的问题”。

In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.[1]

The problem of finding the shortest path between two intersections on a road map may be modeled as a special case of the shortest path problem in graphs, where the vertices correspond to intersections and the edges correspond to road segments, each weighted by the length or distance of each segment.[2]

Definition

[edit]

The shortest path problem can be defined for graphs whether undirected, directed, or mixed. The definition for undirected graphs states that every edge can be traversed in either direction. Directed graphs require that consecutive vertices be connected by an appropriate directed edge.[3]

Two vertices are adjacent when they are both incident to a common edge. A path in an undirected graph is a sequence of vertices such that is adjacent to for . Such a path is called a path of length from to . (The are variables; their numbering relates to their position in the sequence and need not relate to a canonical labeling.)

Let where is the edge incident to both and . Given a real-valued weight function , and an undirected (simple) graph , the shortest path from to is the path (where and ) that over all possible minimizes the sum When each edge in the graph has unit weight or , this is equivalent to finding the path with fewest edges.

The problem is also sometimes called the single-pair shortest path problem, to distinguish it from the following variations:

  • The single-source shortest path problem, in which we have to find shortest paths from a source vertex v to all other vertices in the graph.
  • The single-destination shortest path problem, in which we have to find shortest paths from all vertices in the directed graph to a single destination vertex v. This can be reduced to the single-source shortest path problem by reversing the arcs in the directed graph.
  • The all-pairs shortest path problem, in which we have to find shortest paths between every pair of vertices v, v' in the graph.

These generalizations have significantly more efficient algorithms than the simplistic approach of running a single-pair shortest path algorithm on all relevant pairs of vertices.

Algorithms

[edit]

Several well-known algorithms exist for solving this problem and its variants.

Additional algorithms and associated evaluations may be found in Cherkassky, Goldberg & Radzik (1996).

Single-source shortest paths

[edit]

Undirected graphs

[edit]
Weights Time complexity Author
+ O(V2) Dijkstra 1959
+ O((E + V) log V) Johnson 1977 (binary heap)
+ O(E + V log V) Fredman & Tarjan 1984 (Fibonacci heap)
O(E) Thorup 1999 (requires constant-time multiplication)
+ Duan et al. 2023

Unweighted graphs

[edit]
Algorithm Time complexity Author
Breadth-first search O(E + V)

Directed acyclic graphs

[edit]

An algorithm using topological sorting can solve the single-source shortest path problem in time Θ(E + V) in arbitrarily-weighted directed acyclic graphs.[4]

Directed graphs with nonnegative weights

[edit]

The following table is taken from Schrijver (2004), with some corrections and additions. A green background indicates an asymptotically best bound in the table; L is the maximum length (or weight) among all edges, assuming integer edge weights.

Weights Algorithm Time complexity Author
Ford 1956
Bellman–Ford algorithm Shimbel 1955, Bellman 1958, Moore 1959
Dantzig 1960
Dijkstra's algorithm with list Leyzorek et al. 1957, Dijkstra 1959, Minty (see Pollack & Wiebenson 1960), Whiting & Hillier 1960
Dijkstra's algorithm with binary heap Johnson 1977
Dijkstra's algorithm with Fibonacci heap Fredman & Tarjan 1984, Fredman & Tarjan 1987
Quantum Dijkstra algorithm with adjacency list Dürr et al. 2006[5]
Dial's algorithm[6] (Dijkstra's algorithm using a bucket queue with L buckets) Dial 1969
Johnson 1981, Karlsson & Poblete 1983
Gabow's algorithm Gabow 1983, Gabow 1985
Ahuja et al. 1990
Thorup Thorup 2004

Directed graphs with arbitrary weights without negative cycles

[edit]
Weights Algorithm Time complexity Author
Ford 1956
Bellman–Ford algorithm Shimbel 1955, Bellman 1958, Moore 1959
Johnson-Dijkstra with binary heap Johnson 1977
Johnson-Dijkstra with Fibonacci heap Fredman & Tarjan 1984, Fredman & Tarjan 1987, adapted after Johnson 1977
Johnson's technique applied to Dial's algorithm[6] Dial 1969, adapted after Johnson 1977
Interior-point method with Laplacian solver Cohen et al. 2017
Interior-point method with flow solver Axiotis, M?dry & Vladu 2020
Robust interior-point method with sketching van den Brand et al. 2020
interior-point method with dynamic min-ratio cycle data structure Chen et al. 2022
Based on low-diameter decomposition Bernstein, Nanongkai & Wulff-Nilsen 2022
Hop-limited shortest paths Fineman 2024

Directed graphs with arbitrary weights with negative cycles

[edit]

Finds a negative cycle or calculates distances to all vertices.

Weights Algorithm Time complexity Author
Andrew V. Goldberg

Planar graphs with nonnegative weights

[edit]
Weights Algorithm Time complexity Author
Henzinger et al. 1997

Applications

[edit]

Network flows[7] are a fundamental concept in graph theory and operations research, often used to model problems involving the transportation of goods, liquids, or information through a network. A network flow problem typically involves a directed graph where each edge represents a pipe, wire, or road, and each edge has a capacity, which is the maximum amount that can flow through it. The goal is to find a feasible flow that maximizes the flow from a source node to a sink node.

Shortest Path Problems can be used to solve certain network flow problems, particularly when dealing with single-source, single-sink networks. In these scenarios, we can transform the network flow problem into a series of shortest path problems.

Transformation Steps

[edit]

[8]

  1. Create a Residual Graph:
    • For each edge (u, v) in the original graph, create two edges in the residual graph:
      • (u, v) with capacity c(u, v)
      • (v, u) with capacity 0
    • The residual graph represents the remaining capacity available in the network.
  2. Find the Shortest Path:
    • Use a shortest path algorithm (e.g., Dijkstra's algorithm, Bellman-Ford algorithm) to find the shortest path from the source node to the sink node in the residual graph.
  3. Augment the Flow:
    • Find the minimum capacity along the shortest path.
    • Increase the flow on the edges of the shortest path by this minimum capacity.
    • Decrease the capacity of the edges in the forward direction and increase the capacity of the edges in the backward direction.
  4. Update the Residual Graph:
    • Update the residual graph based on the augmented flow.
  5. Repeat:
    • Repeat steps 2-4 until no more paths can be found from the source to the sink.

All-pairs shortest paths

[edit]

The all-pairs shortest path problem finds the shortest paths between every pair of vertices v, v' in the graph. The all-pairs shortest paths problem for unweighted directed graphs was introduced by Shimbel (1953), who observed that it could be solved by a linear number of matrix multiplications that takes a total time of O(V4).

Undirected graph

[edit]
Weights Time complexity Algorithm
+ O(V3) Floyd–Warshall algorithm
Seidel's algorithm (expected running time)
Williams 2014
+ O(EV log α(E,V)) Pettie & Ramachandran 2002
O(EV) Thorup 1999 applied to every vertex (requires constant-time multiplication).

Directed graph

[edit]
Weights Time complexity Algorithm
(no negative cycles) Floyd–Warshall algorithm
Williams 2014
(no negative cycles) Quantum search[9][10]
(no negative cycles) O(EV + V2 log V) Johnson–Dijkstra
(no negative cycles) O(EV + V2 log log V) Pettie 2004
O(EV + V2 log log V) Hagerup 2000

Applications

[edit]

Shortest path algorithms are applied to automatically find directions between physical locations, such as driving directions on web mapping websites like MapQuest or Google Maps. For this application fast specialized algorithms are available.[11]

If one represents a nondeterministic abstract machine as a graph where vertices describe states and edges describe possible transitions, shortest path algorithms can be used to find an optimal sequence of choices to reach a certain goal state, or to establish lower bounds on the time needed to reach a given state. For example, if vertices represent the states of a puzzle like a Rubik's Cube and each directed edge corresponds to a single move or turn, shortest path algorithms can be used to find a solution that uses the minimum possible number of moves.

In a networking or telecommunications mindset, this shortest path problem is sometimes called the min-delay path problem and usually tied with a widest path problem. For example, the algorithm may seek the shortest (min-delay) widest path, or widest shortest (min-delay) path.[12]


A more lighthearted application is the games of "six degrees of separation" that try to find the shortest path in graphs like movie stars appearing in the same film.

Other applications, often studied in operations research, include plant and facility layout, robotics, transportation, and VLSI design.[13]

Road networks

[edit]

A road network can be considered as a graph with positive weights. The nodes represent road junctions and each edge of the graph is associated with a road segment between two junctions. The weight of an edge may correspond to the length of the associated road segment, the time needed to traverse the segment, or the cost of traversing the segment. Using directed edges it is also possible to model one-way streets. Such graphs are special in the sense that some edges are more important than others for long-distance travel (e.g. highways). This property has been formalized using the notion of highway dimension.[14] There are a great number of algorithms that exploit this property and are therefore able to compute the shortest path a lot quicker than would be possible on general graphs.

All of these algorithms work in two phases. In the first phase, the graph is preprocessed without knowing the source or target node. The second phase is the query phase. In this phase, source and target node are known. The idea is that the road network is static, so the preprocessing phase can be done once and used for a large number of queries on the same road network.

The algorithm with the fastest known query time is called hub labeling and is able to compute shortest path on the road networks of Europe or the US in a fraction of a microsecond.[15] Other techniques that have been used are:

[edit]

For shortest path problems in computational geometry, see Euclidean shortest path.

The shortest multiple disconnected path [16] is a representation of the primitive path network within the framework of Reptation theory. The widest path problem seeks a path so that the minimum label of any edge is as large as possible.

Other related problems may be classified into the following categories.

Paths with constraints

[edit]

Unlike the shortest path problem, which can be solved in polynomial time in graphs without negative cycles, shortest path problems which include additional constraints on the desired solution path are called Constrained Shortest Path First, and are harder to solve. One example is the constrained shortest path problem,[17] which attempts to minimize the total cost of the path while at the same time maintaining another metric below a given threshold. This makes the problem NP-complete (such problems are not believed to be efficiently solvable for large sets of data, see P = NP problem). Another NP-complete example requires a specific set of vertices to be included in the path,[18] which makes the problem similar to the Traveling Salesman Problem (TSP). The TSP is the problem of finding the shortest path that goes through every vertex exactly once, and returns to the start. The problem of finding the longest path in a graph is also NP-complete.

Partial observability

[edit]

The Canadian traveller problem and the stochastic shortest path problem are generalizations where either the graph is not completely known to the mover, changes over time, or where actions (traversals) are probabilistic.[19][20]

Strategic shortest paths

[edit]

Sometimes, the edges in a graph have personalities: each edge has its own selfish interest. An example is a communication network, in which each edge is a computer that possibly belongs to a different person. Different computers have different transmission speeds, so every edge in the network has a numeric weight equal to the number of milliseconds it takes to transmit a message. Our goal is to send a message between two points in the network in the shortest time possible. If we know the transmission-time of each computer (the weight of each edge), then we can use a standard shortest-paths algorithm. If we do not know the transmission times, then we have to ask each computer to tell us its transmission-time. But, the computers may be selfish: a computer might tell us that its transmission time is very long, so that we will not bother it with our messages. A possible solution to this problem is to use a variant of the VCG mechanism, which gives the computers an incentive to reveal their true weights.

Negative cycle detection

[edit]

In some cases, the main goal is not to find the shortest path, but only to detect if the graph contains a negative cycle. Some shortest-paths algorithms can be used for this purpose:

  • The Bellman–Ford algorithm can be used to detect a negative cycle in time .
  • Cherkassky and Goldberg[21] survey several other algorithms for negative cycle detection.

General algebraic framework on semirings: the algebraic path problem

[edit]

Many problems can be framed as a form of the shortest path for some suitably substituted notions of addition along a path and taking the minimum. The general approach to these is to consider the two operations to be those of a semiring. Semiring multiplication is done along the path, and the addition is between paths. This general framework is known as the algebraic path problem.[22][23][24]

Most of the classic shortest-path algorithms (and new ones) can be formulated as solving linear systems over such algebraic structures.[25]

More recently, an even more general framework for solving these (and much less obviously related problems) has been developed under the banner of valuation algebras.[26]

Shortest path in stochastic time-dependent networks

[edit]

In real-life, a transportation network is usually stochastic and time-dependent. The travel duration on a road segment depends on many factors such as the amount of traffic (origin-destination matrix), road work, weather, accidents and vehicle breakdowns. A more realistic model of such a road network is a stochastic time-dependent (STD) network.[27][28]

There is no accepted definition of optimal path under uncertainty (that is, in stochastic road networks). It is a controversial subject, despite considerable progress during the past decade. One common definition is a path with the minimum expected travel time. The main advantage of this approach is that it can make use of efficient shortest path algorithms for deterministic networks. However, the resulting optimal path may not be reliable, because this approach fails to address travel time variability.

To tackle this issue, some researchers use travel duration distribution instead of its expected value. So, they find the probability distribution of total travel duration using different optimization methods such as dynamic programming and Dijkstra's algorithm .[29] These methods use stochastic optimization, specifically stochastic dynamic programming to find the shortest path in networks with probabilistic arc length.[30] The terms travel time reliability and travel time variability are used as opposites in the transportation research literature: the higher the variability, the lower the reliability of predictions.

To account for variability, researchers have suggested two alternative definitions for an optimal path under uncertainty. The most reliable path is one that maximizes the probability of arriving on time given a travel time budget. An α-reliable path is one that minimizes the travel time budget required to arrive on time with a given probability.

See also

[edit]

References

[edit]

Notes

[edit]
  1. ^ The Shortest-Path Problem. Synthesis Lectures on Theoretical Computer Science. 2015. doi:10.1007/978-3-031-02574-7. ISBN 978-3-031-01446-8.
  2. ^ Guenin, Bertrand (2014). Gentle Introduction to Optimization. Jochen Koenemann, Levent Tun?el (1st ed.). West Nyack: Cambridge University Press. p. 27. ISBN 978-1-107-05344-1.
  3. ^ Deo, Narsingh (17 August 2016). Graph Theory with Applications to Engineering and Computer Science. Courier Dover Publications. ISBN 978-0-486-80793-5.
  4. ^ Cormen et al. 2001, p. 655
  5. ^ Dürr, Christoph; Heiligman, Mark; H?yer, Peter; Mhalla, Mehdi (January 2006). "Quantum query complexity of some graph problems". SIAM Journal on Computing. 35 (6): 1310–1328. arXiv:quant-ph/0401091. doi:10.1137/050644719. ISSN 0097-5397. S2CID 14253494.
  6. ^ a b Dial, Robert B. (1969). "Algorithm 360: Shortest-Path Forest with Topological Ordering [H]". Communications of the ACM. 12 (11): 632–633. doi:10.1145/363269.363610. S2CID 6754003.
  7. ^ Cormen, Thomas H. (July 31, 2009). Introduction to Algorithms (3rd ed.). MIT Press. ISBN 9780262533058.
  8. ^ Kleinberg, Jon; Tardos, éva (2005). Algorithm Design (1st ed.). Addison-Wesley. ISBN 978-0321295354.
  9. ^ Dürr, C.; H?yer, P. (2025-08-06). "A Quantum Algorithm for Finding the Minimum". arXiv:quant-ph/9607014.
  10. ^ Nayebi, Aran; Williams, V. V. (2025-08-06). "Quantum algorithms for shortest paths problems in structured instances". arXiv:1410.6220 [quant-ph].
  11. ^ Sanders, Peter (March 23, 2009). "Fast route planning". Google Tech Talk. Archived from the original on 2025-08-06.
  12. ^ Hoceini, S.; A. Mellouk; Y. Amirat (2005). "K-Shortest Paths Q-Routing: A New QoS Routing Algorithm in Telecommunication Networks". Networking - ICN 2005, Lecture Notes in Computer Science, Vol. 3421. Vol. 3421. Springer, Berlin, Heidelberg. pp. 164–172. doi:10.1007/978-3-540-31957-3_21. ISBN 978-3-540-25338-9.
  13. ^ Chen, Danny Z. (December 1996). "Developing algorithms and software for geometric path planning problems". ACM Computing Surveys. 28 (4es). Article 18. doi:10.1145/242224.242246. S2CID 11761485.
  14. ^ Abraham, Ittai; Fiat, Amos; Goldberg, Andrew V.; Werneck, Renato F. "Highway Dimension, Shortest Paths, and Provably Efficient Algorithms". ACM-SIAM Symposium on Discrete Algorithms, pages 782–793, 2010.
  15. ^ Abraham, Ittai; Delling, Daniel; Goldberg, Andrew V.; Werneck, Renato F. research.microsoft.com/pubs/142356/HL-TR.pdf "A Hub-Based Labeling Algorithm for Shortest Paths on Road Networks". Symposium on Experimental Algorithms, pages 230–241, 2011.
  16. ^ Kroger, Martin (2005). "Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems". Computer Physics Communications. 168 (3): 209–232. Bibcode:2005CoPhC.168..209K. doi:10.1016/j.cpc.2005.01.020.
  17. ^ Lozano, Leonardo; Medaglia, Andrés L (2013). "On an exact method for the constrained shortest path problem". Computers & Operations Research. 40 (1): 378–384. doi:10.1016/j.cor.2012.07.008.
  18. ^ Osanlou, Kevin; Bursuc, Andrei; Guettier, Christophe; Cazenave, Tristan; Jacopin, Eric (2019). "Optimal Solving of Constrained Path-Planning Problems with Graph Convolutional Networks and Optimized Tree Search". 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 3519–3525. arXiv:2108.01036. doi:10.1109/IROS40897.2019.8968113. ISBN 978-1-7281-4004-9. S2CID 210706773.
  19. ^ Bar-Noy, Amotz; Schieber, Baruch (1991). "The canadian traveller problem". Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms: 261–270. CiteSeerX 10.1.1.1088.3015.
  20. ^ Nikolova, Evdokia; Karger, David R. "Route planning under uncertainty: the Canadian traveller problem" (PDF). Proceedings of the 23rd National Conference on Artificial Intelligence (AAAI). pp. 969–974. Archived (PDF) from the original on 2025-08-06.
  21. ^ Cherkassky, Boris V.; Goldberg, Andrew V. (2025-08-06). "Negative-cycle detection algorithms". Mathematical Programming. 85 (2): 277–311. doi:10.1007/s101070050058. ISSN 1436-4646. S2CID 79739.
  22. ^ Pair, Claude (1967). "Sur des algorithmes pour des problèmes de cheminement dans les graphes finis" [On algorithms for path problems in finite graphs]. In Rosentiehl, Pierre (ed.). Théorie des graphes (journées internationales d'études) [Theory of Graphs (international symposium)]. Rome (Italy), July 1966. Dunod (Paris); Gordon and Breach (New York). p. 271. OCLC 901424694.
  23. ^ Derniame, Jean Claude; Pair, Claude (1971). Problèmes de cheminement dans les graphes [Path Problems in Graphs]. Dunod (Paris).
  24. ^ Baras, John; Theodorakopoulos, George (4 April 2010). Path Problems in Networks. Morgan & Claypool Publishers. pp. 9–. ISBN 978-1-59829-924-3.
  25. ^ Gondran, Michel; Minoux, Michel (2008). "chapter 4". Graphs, Dioids and Semirings: New Models and Algorithms. Springer Science & Business Media. ISBN 978-0-387-75450-5.
  26. ^ Pouly, Marc; Kohlas, Jürg (2011). "Chapter 6. Valuation Algebras for Path Problems". Generic Inference: A Unifying Theory for Automated Reasoning. John Wiley & Sons. ISBN 978-1-118-01086-0.
  27. ^ Loui, R.P., 1983. Optimal paths in graphs with stochastic or multidimensional weights. Communications of the ACM, 26(9), pp.670-676.
  28. ^ Rajabi-Bahaabadi, Mojtaba; Shariat-Mohaymany, Afshin; Babaei, Mohsen; Ahn, Chang Wook (2015). "Multi-objective path finding in stochastic time-dependent road networks using non-dominated sorting genetic algorithm". Expert Systems with Applications. 42 (12): 5056–5064. doi:10.1016/j.eswa.2015.02.046.
  29. ^ Olya, Mohammad Hessam (2014). "Finding shortest path in a combined exponential – gamma probability distribution arc length". International Journal of Operational Research. 21 (1): 25–37. doi:10.1504/IJOR.2014.064020.
  30. ^ Olya, Mohammad Hessam (2014). "Applying Dijkstra's algorithm for general shortest path problem with normal probability distribution arc length". International Journal of Operational Research. 21 (2): 143–154. doi:10.1504/IJOR.2014.064541.

Bibliography

[edit]

Further reading

[edit]
今天美国什么节日 圣诞是什么意思 眼睛肿胀是什么原因 懿是什么意思 小腹痛男性什么原因
什么的向日葵 梦见牛粪是什么意思 虾皮有什么营养价值 梦见情人是什么意思啊 女人长期做俯卧撑有什么效果
豹子是什么牌子 发光免疫是检查什么的 耳石症挂什么科 10.19什么星座 二十三岁属什么生肖
缓解是什么意思 阴虚吃什么中药 血小板低有什么症状 晚上睡觉口苦是什么原因 四十年婚姻是什么婚
大象又什么又什么hcv8jop3ns0r.cn 招商是什么工作dayuxmw.com 开斋节是什么意思hcv9jop0ns2r.cn 拉屎发黑是什么原因hcv8jop1ns6r.cn 512是什么星座hcv8jop7ns0r.cn
冬眠的动物有什么hcv8jop6ns5r.cn 湿疹是什么原因造成的hcv9jop3ns2r.cn 桂枝茯苓丸主治什么病hcv8jop2ns4r.cn 什么叫桥本甲状腺炎hcv9jop4ns6r.cn 酗酒是什么意思hcv8jop2ns7r.cn
1893年属什么生肖inbungee.com 乳头经常痒是什么原因hcv8jop4ns8r.cn 小孩肚子疼是什么原因hcv8jop3ns2r.cn 认真是什么意思hcv7jop6ns7r.cn 皮质醇是什么hcv9jop4ns3r.cn
便秘吃什么快速通便hcv7jop7ns0r.cn 一什么屏风hcv9jop3ns1r.cn 用什么能把牙齿洗白hcv8jop5ns2r.cn 刀子嘴豆腐心是什么意思hcv8jop6ns0r.cn 咳嗽吃什么药好hcv8jop5ns7r.cn
百度