尖嘴猴腮是什么生肖| 弱碱水是什么水| 嘬是什么意思| 慢性胃炎吃什么药效果好| 什么是18k金| 什么是pid| 95年猪是什么命| 阴道口出血是什么原因| 糖尿病有什么症状| 前列腺素是什么| 你什么都没看见| 参加追悼会穿什么衣服| 牛牛是什么意思| 啐了一口是什么意思| 仔字五行属什么| leg是什么意思| 彗星尾征是什么意思| 蓝莓什么时候吃最好| 什么是公主病| 血管狭窄吃什么药| 向日葵是什么季节| bug是什么意思| 灏字五行属什么| 脚指甲为什么变黑| 什么牌子洗衣机好| trendiano什么牌子| 港式按摩是什么意思| 上呼吸道感染吃什么中成药| 儿童补锌吃什么| 无名指戴戒指什么意思| 晕车喝什么| 遗精是什么原因引起的| 泡汤是什么意思| 盖世英雄是什么意思| 本科和专科有什么区别| 为什么家里会有隐翅虫| ac是什么元素| 容易出汗什么原因| 指导员是什么级别| 手腕疼痛是什么原因| hpv低危型是什么意思| 花木兰是什么朝代| 三十岁是什么之年| 耻骨高是什么原因| 神气活现是什么意思| 划扣是什么意思| 熟褐色是什么颜色| 什么样的头发| 暴饮暴食是什么意思| 五月初十是什么星座| 夏末是什么时候| 冠冕堂皇什么意思| 年薪20万算什么水平| 宗师是什么意思| 尿道结石有什么症状| 美国为什么要打伊朗| 血竭是什么东西| 脱臼是指什么从什么中滑脱| 钙不能和什么一起吃| 吃槟榔有什么好处| 7月8号什么星座| 吃什么水果对心脏好| 肾结石什么不能吃| 排卵期出血是什么原因造成的| 高压正常低压低是什么原因| 白带发黄用什么药| 酸西地那非片是什么药| 尿蛋白是什么原因| 暗渡陈仓是什么生肖| 干燥症是什么症状| 办慢性病有什么好处| 间接胆红素高是什么意思| 为什么医院都让喝雀巢奶粉| 乏了是什么意思| 果酸是什么东西| 猛吸气胸口疼什么原因| 知性是什么类型的女人| 红线是什么意思| 心律不齐吃什么药效果好| 白天为什么能看到月亮| 血糖高吃什么水果最好| 祭日是什么意思| 猫咪拉稀吃什么药| 水浒传有什么故事| 血氧仪是干什么用的| 睡觉吹气是什么原因| 为什么会突然耳鸣| ca125是查什么的| 吃什么补铁快| 惠字五行属什么| 石斛长什么样子图片| 鸡血藤有什么作用| 日本牛郎是干什么的| 小孩子流鼻血是什么原因引起的| 通马桶的工具叫什么| 墨镜偏光是什么意思| 卵巢囊肿有什么危害| 什么是码率| 什么人容易得间质瘤| 打卤面都有什么卤| 植物都有什么| 翻糖是什么| 梦见佛像是什么预兆| 山竹为什么那么贵| 海底椰是什么| 做梦梦见打架是什么意思| 走读生是什么意思| 哺乳期上火了吃什么降火最快| 秘书是什么意思| 鬼迷心窍什么意思| 崇洋媚外是什么意思| 聚乙二醇是什么| 豆瓣酱可以做什么菜| 催供香是什么意思| 一天两包烟会导致什么后果| 淋巴细胞高是什么意思| 颈静脉怒张见于什么病| 处女和什么座最配对| 口红用什么能洗掉| 验孕棒什么时候测准确| 木代表什么生肖| 肺部钙化是什么意思啊| 肩周炎不能吃什么食物| 姨妈没来是什么原因| 松果体囊肿是什么病| 脾肾阳虚吃什么中成药最好| 牙套什么年龄戴合适| 热伤风感冒吃什么药| 为什么呢| 什么榴莲品种最好吃| 阴阳怪气是什么意思| 青岛是什么省| 脑供血不足食补吃什么| 磨牙缺什么| 大便不通吃什么药| 诺诗兰属于什么档次| 束缚什么意思| 溃疡是什么病| 眼睛发红是什么原因| 耳后有痣代表什么| 祖马龙是什么档次| 手足口病挂什么科| 全国政协副主席是什么级别| 头发斑秃是什么原因引起的| 减肥什么时候喝牛奶| 唐伯虎是什么生肖| 肛瘘不治疗有什么后果| 县长是什么级别的干部| 西装革履什么意思| 吃什么东西对肝脏好| 尿潴留是什么原因引起的| 什么是脂肪| 中药什么时候喝效果最好| 工业氧气和医用氧气有什么区别| 藏青色t恤配什么颜色裤子| 什么是裸眼视力| 77年属什么生肖| 蓝莓吃了有什么好处| 二甲双胍什么时候吃| 硫酸羟氯喹片治什么病| 紫罗兰色是什么颜色| 七情六欲指什么| 疟疾病的症状是什么样| 炖羊骨头放什么调料| 天德合是什么意思| 真菌菌丝阳性什么意思| 麻豆是什么| 财鱼是什么鱼| 心脏右束支传导阻滞是什么意思| 女人为什么会阳虚| 先下手为强是什么意思| 什么叫代孕| 鳜鱼是什么鱼| 生吃大蒜有什么好处| 泰坦尼克号什么时候上映的| 多指是什么遗传方式| 硬度不够吃什么药调理| 梦见海水是什么意思| 西昌火把节是什么时候| 猪脚炖什么| 乙肝235阳性是什么意思| 梅雨季节是什么意思| dmdm乙内酰脲是什么| 为什么广西女孩子好娶| 丁火是什么火| 吃什么会影响验孕棒检验结果| 丝状疣是什么样子图片| 蛇喜欢吃什么食物| 每天吃维生素c有什么好处| 正切是什么| m表示什么| 唐僧属什么生肖| 永加一个日念什么| 杨梅不能与什么同吃| 叶酸片什么时候吃合适| 内分泌科属于什么科| 取环后需要注意什么| 兄弟是什么生肖| 面色潮红是什么原因| 清肺热用什么泡水喝比较好| 让姨妈推迟吃什么药| 政委是什么级别| 孩子拉肚子吃什么食物好| 羊奶不能和什么一起吃| 忘恩负义的负是什么意思| 下联是什么| siri是什么| 做ct需要注意什么| 尿酸高喝什么茶| 吃什么健脾胃除湿气| 莫西沙星片主治什么病| 钾高了会出现什么症状| a1微球蛋白偏高说明什么意思| 香港有什么东西值得买| 龙和什么生肖相冲| 4月19号是什么星座| 4月23日是什么日子| 什么食物维生素A含量高| 粤语骑马过海什么意思| 恢复是什么意思| 母仪天下什么意思| 冰火两重天是什么意思| 第一次什么感觉| 膝盖酸疼是什么原因| 星座上升是什么意思| 反黑是什么意思| 什么树叶| 什么的| 祛痣挂什么科| 讲义是什么| 十月一日什么星座| 尿胆原norm是什么意思| 本命年为什么要穿红色| 贫血看什么科| 海鲜过敏吃什么药| 右边脑袋疼是什么原因| 八月节是什么节| 广州有什么玩的| 62年属什么| 华五行属什么| 什么是环切手术| 音什么笑什么成语| 为什么会子宫内膜增厚| 胰腺炎是什么病严重吗| 鲤鱼吃什么食物| uniqlo是什么牌子| 5.5号是什么星座| 身份证尾号代表什么| 红参有什么作用| 骏字五行属什么| 身上发冷是什么原因| 生物工程专业学什么| 喜欢吃酸的是什么原因| 食邑万户是什么意思| 胃烧灼感是什么原因| 口苦吃什么好得快| g6pd是什么意思| 闹乌龙是什么意思| 俊俏什么意思| 牙周康又叫什么名字| 血氨高是什么原因| 屈光检查是什么| 竹肠是什么部位| 钝角是什么意思| 百度Jump to content

肚子两侧疼是什么原因

From Wikipedia, the free encyclopedia
百度 (白国龙)责编:许雪

In theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".[1]

In order to perform a rigorous study of computation, computer scientists work with a mathematical abstraction of computers called a model of computation. There are several models in use, but the most commonly examined is the Turing machine.[2] Computer scientists study the Turing machine because it is simple to formulate, can be analyzed and used to prove results, and because it represents what many consider the most powerful possible "reasonable" model of computation (see Church–Turing thesis).[3] It might seem that the potentially infinite memory capacity is an unrealizable attribute, but any decidable problem[4] solved by a Turing machine will always require only a finite amount of memory. So in principle, any problem that can be solved (decided) by a Turing machine can be solved by a computer that has a finite amount of memory.

History

[edit]

The theory of computation can be considered the creation of models of all kinds in the field of computer science. Therefore, mathematics and logic are used. In the last century, it separated from mathematics and became an independent academic discipline with its own conferences such as FOCS in 1960 and STOC in 1969, and its own awards such as the IMU Abacus Medal (established in 1981 as the Rolf Nevanlinna Prize), the G?del Prize, established in 1993, and the Knuth Prize, established in 1996.

Some pioneers of the theory of computation were Ramon Llull, Alonzo Church, Kurt G?del, Alan Turing, Stephen Kleene, Rózsa Péter, John von Neumann and Claude Shannon.

Branches

[edit]

Automata theory

[edit]
Grammar Languages Automaton Production rules (constraints)
Type-0 Recursively enumerable Turing machine (no restrictions)
Type-1 Context-sensitive Linear-bounded non-deterministic Turing machine
Type-2 Context-free Non-deterministic pushdown automaton
Type-3 Regular Finite-state automaton
and

Automata theory is the study of abstract machines (or more appropriately, abstract 'mathematical' machines or systems) and the computational problems that can be solved using these machines. These abstract machines are called automata. Automata comes from the Greek word (Αυτ?ματα) which means that something is doing something by itself. Automata theory is also closely related to formal language theory,[5] as the automata are often classified by the class of formal languages they are able to recognize. An automaton can be a finite representation of a formal language that may be an infinite set. Automata are used as theoretical models for computing machines, and are used for proofs about computability.

Formal language theory

[edit]
The Chomsky hierarchy
Set inclusions described by the Chomsky hierarchy

Formal language theory is a branch of mathematics concerned with describing languages as a set of operations over an alphabet. It is closely linked with automata theory, as automata are used to generate and recognize formal languages. There are several classes of formal languages, each allowing more complex language specification than the one before it, i.e. Chomsky hierarchy,[6] and each corresponding to a class of automata which recognizes it. Because automata are used as models for computation, formal languages are the preferred mode of specification for any problem that must be computed.

Computability theory

[edit]

Computability theory deals primarily with the question of the extent to which a problem is solvable on a computer. The statement that the halting problem cannot be solved by a Turing machine[7] is one of the most important results in computability theory, as it is an example of a concrete problem that is both easy to formulate and impossible to solve using a Turing machine. Much of computability theory builds on the halting problem result.

Another important step in computability theory was Rice's theorem, which states that for all non-trivial properties of partial functions, it is undecidable whether a Turing machine computes a partial function with that property.[8]

Computability theory is closely related to the branch of mathematical logic called recursion theory, which removes the restriction of studying only models of computation which are reducible to the Turing model.[9] Many mathematicians and computational theorists who study recursion theory will refer to it as computability theory.

Computational complexity theory

[edit]
A representation of the relation among complexity classes

Computational complexity theory considers not only whether a problem can be solved at all on a computer, but also how efficiently the problem can be solved. Two major aspects are considered: time complexity and space complexity, which are respectively how many steps it takes to perform a computation, and how much memory is required to perform that computation.

In order to analyze how much time and space a given algorithm requires, computer scientists express the time or space required to solve the problem as a function of the size of the input problem. For example, finding a particular number in a long list of numbers becomes harder as the list of numbers grows larger. If we say there are n numbers in the list, then if the list is not sorted or indexed in any way we may have to look at every number in order to find the number we're seeking. We thus say that in order to solve this problem, the computer needs to perform a number of steps that grow linearly in the size of the problem.

To simplify this problem, computer scientists have adopted big O notation, which allows functions to be compared in a way that ensures that particular aspects of a machine's construction do not need to be considered, but rather only the asymptotic behavior as problems become large. So in our previous example, we might say that the problem requires steps to solve.

Perhaps the most important open problem in all of computer science is the question of whether a certain broad class of problems denoted NP can be solved efficiently. This is discussed further at Complexity classes P and NP, and P versus NP problem is one of the seven Millennium Prize Problems stated by the Clay Mathematics Institute in 2000. The Official Problem Description was given by Turing Award winner Stephen Cook.

Models of computation

[edit]

Aside from a Turing machine, other equivalent (see Church–Turing thesis) models of computation are in use.

Lambda calculus
A computation consists of an initial lambda expression (or two if you want to separate the function and its input) plus a finite sequence of lambda terms, each deduced from the preceding term by one application of Beta reduction.
Combinatory logic
is a concept which has many similarities to -calculus, but also important differences exist (e.g. fixed point combinator Y has normal form in combinatory logic but not in -calculus). Combinatory logic was developed with great ambitions: understanding the nature of paradoxes, making foundations of mathematics more economic (conceptually), eliminating the notion of variables (thus clarifying their role in mathematics).
μ-recursive functions
a computation consists of a mu-recursive function, i.e. its defining sequence, any input value(s) and a sequence of recursive functions appearing in the defining sequence with inputs and outputs. Thus, if in the defining sequence of a recursive function the functions and appear, then terms of the form 'g(5)=7' or 'h(3,2)=10' might appear. Each entry in this sequence needs to be an application of a basic function or follow from the entries above by using composition, primitive recursion or μ recursion. For instance if , then for 'f(5)=3' to appear, terms like 'g(5)=6' and 'h(5,6)=3' must occur above. The computation terminates only if the final term gives the value of the recursive function applied to the inputs.
Markov algorithm
a string rewriting system that uses grammar-like rules to operate on strings of symbols.
Register machine
is a theoretically interesting idealization of a computer. There are several variants. In most of them, each register can hold a natural number (of unlimited size), and the instructions are simple (and few in number), e.g. only decrementation (combined with conditional jump) and incrementation exist (and halting). The lack of the infinite (or dynamically growing) external store (seen at Turing machines) can be understood by replacing its role with G?del numbering techniques: the fact that each register holds a natural number allows the possibility of representing a complicated thing (e.g. a sequence, or a matrix etc.) by an appropriately huge natural number — unambiguity of both representation and interpretation can be established by number theoretical foundations of these techniques.

In addition to the general computational models, some simpler computational models are useful for special, restricted applications. Regular expressions, for example, specify string patterns in many contexts, from office productivity software to programming languages. Another formalism mathematically equivalent to regular expressions, finite automata are used in circuit design and in some kinds of problem-solving. Context-free grammars specify programming language syntax. Non-deterministic pushdown automata are another formalism equivalent to context-free grammars. Primitive recursive functions are a defined subclass of the recursive functions.

Different models of computation have the ability to do different tasks. One way to measure the power of a computational model is to study the class of formal languages that the model can generate; in such a way to the Chomsky hierarchy of languages is obtained.

References

[edit]
  1. ^ Sipser (2013, p. 1):

    "central areas of the theory of computation: automata, computability, and complexity."

  2. ^ Hodges, Andrew (2012). Alan Turing: The Enigma (The Centenary ed.). Princeton University Press. ISBN 978-0-691-15564-7.
  3. ^ Rabin, Michael O. (June 2012). Turing, Church, G?del, Computability, Complexity and Randomization: A Personal View.
  4. ^ Donald Monk (1976). Mathematical Logic. Springer-Verlag. ISBN 9780387901701.
  5. ^ Hopcroft, John E. and Jeffrey D. Ullman (2006). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Reading, MA: Addison-Wesley. ISBN 978-0-321-45536-9.
  6. ^ Chomsky, N. (1956). "Three models for the description of language". IEEE Transactions on Information Theory. 2 (3): 113–124. doi:10.1109/TIT.1956.1056813. S2CID 19519474.
  7. ^ Alan Turing (1937). "On computable numbers, with an application to the Entscheidungsproblem". Proceedings of the London Mathematical Society. 2 (42). IEEE: 230–265. doi:10.1112/plms/s2-42.1.230. S2CID 73712. Retrieved 6 January 2015.
  8. ^ Henry Gordon Rice (1953). "Classes of Recursively Enumerable Sets and Their Decision Problems". Transactions of the American Mathematical Society. 74 (2). American Mathematical Society: 358–366. doi:10.2307/1990888. JSTOR 1990888.
  9. ^ Martin Davis (2004). The undecidable: Basic papers on undecidable propositions, unsolvable problems and computable functions (Dover Ed). Dover Publications. ISBN 978-0486432281.

Further reading

[edit]
Textbooks aimed at computer scientists

(There are many textbooks in this area; this list is by necessity incomplete.)

Books on computability theory from the (wider) mathematical perspective
Historical perspective
[edit]
小肠气是什么病 什么可以补肾壮阳 自然流产的症状是什么样的 一直放屁什么原因 甘油三脂是什么
腹泻吃什么食物 三伏贴能治什么病 橙子不能和什么一起吃 正月开什么花 脚冰凉吃什么药
所不欲勿施于人是什么意思 五十肩是什么意思 北京户口有什么用 奶粉二段和三段有什么区别 什么样的人死后还会出现
四面楚歌是什么生肖 埋伏是什么意思 胰腺管扩张是什么原因 offer是什么 什么茶能去体内湿气
神经性皮炎用什么药膏效果最好hcv8jop0ns5r.cn 孕酮低跟什么有关系hcv7jop9ns6r.cn 肝实质回声密集是什么意思baiqunet.com 孩子咽炎老是清嗓子吃什么药hcv9jop1ns3r.cn 什么是嗳气helloaicloud.com
早泄吃什么药见效hcv8jop9ns9r.cn 四肢无力是什么原因hcv9jop0ns4r.cn 王维是诗什么hcv8jop1ns0r.cn 绞股蓝有什么作用hcv8jop0ns5r.cn 喜什么自什么hcv9jop0ns4r.cn
淋巴细胞偏高是什么意思hcv9jop8ns0r.cn 什么可以解酒最快方法hcv7jop9ns3r.cn 人中深的女人代表什么hcv8jop7ns3r.cn 一个合一个页读什么hcv8jop2ns4r.cn 左氧氟沙星是什么药hcv8jop7ns0r.cn
2月18号什么星座kuyehao.com 什么是尿崩症wuhaiwuya.com 属猴的幸运色是什么颜色hcv9jop2ns9r.cn 消化不良大便什么颜色hcv9jop3ns8r.cn 什么的阳光hcv8jop7ns9r.cn
百度