的确良是什么面料| 麒麟到了北极会变成什么| 戴笠什么军衔| 梦见厕所是什么预兆| 睾丸肿大是什么原因| 结婚40年是什么婚| 异地办理临时身份证需要什么材料| 量贩式ktv是什么意思| 阿拉伯人属于什么人种| 早谢是什么症状| 苹果吃了有什么好处| e m s是什么快递| 炁读什么| 奶绿是什么| 吃了龙虾后不能吃什么| 干眼症是什么原因引起的| 祛斑喝什么花茶最有效| herry是什么意思| 黄瓜炒什么| 喝什么解酒快| 势均力敌什么意思| cenxino手表是什么牌子| 活塞是什么意思| 红眼病用什么眼药水| 手经常抽筋是什么原因| 天天喝可乐有什么危害| 清远有什么好玩的| 饱不洗头饿不洗澡是为什么| 五味子是什么| 梦见别人给我介绍对象是什么意思| 梦到蛇是什么预兆| 糖是什么意思| 篮球中锋是干什么的| 1985年什么命| 胸闷是什么原因| 礼佛是什么意思| 小孩子发烧抽搐是什么原因| 胃寒能吃什么水果| 宝宝蛋白质过敏喝什么奶粉| 十三太保什么意思| 命格是什么| 非典型细胞是什么意思| pci是什么| 11月9日是什么星座| 水仙茶适合什么人喝| 什么情况打破伤风| aa是什么意思| 精益求精下一句是什么| 男人睡觉流口水是什么原因| 做四维需要准备什么| 玉米除草剂什么时候打最好| 茄子把有什么功效| 2002是什么年| 五花八门是什么意思| 什么是前列腺钙化| 什么是破伤风| 7月26日是什么日子| 卵泡期什么意思| 井盖为什么是圆的| 女人吃什么养肝排毒| 对策是什么意思| 长白头发缺什么维生素| 括约肌是什么| 7年之痒是什么意思| 懒趴是什么意思| 爬山带什么食物比较好| 西方属于五行属什么| 千米的字母是什么| 什么水果补气血| 钝角是什么意思| 丝瓜络是什么东西| 双歧杆菌三联和四联有什么区别| 八字带什么的长寿| 睡觉时间长是什么原因| 为什么子宫会下垂| 伽马射线是什么| 小孩尿酸高是什么原因| 一什么风光| 首脑是什么意思| 打疫苗前后要注意什么| 紫色是什么颜色调出来的| rpr阴性是什么意思| 缺锌吃什么食物和水果| 耐受是什么意思| 小肠气是什么症状| 宝宝打嗝是什么原因引起的| 喉结肿大是什么原因| 治疗呼吸道感染用什么药最好| 财神在什么方位| 牡丹花什么季节开| 吃什么升血小板最快最好| 欲生欲死是什么意思| 动物奶油是什么做的| 咳白色泡沫痰是什么病| 张钧甯为什么读mi| 什么的眼睛填空| 36d是什么意思| 拉拉裤和纸尿裤有什么区别| 快乐大本营为什么停播| 夏天为什么不能喝红茶| 腿部青筋明显是什么原因| 姝字五行属什么的| 婚车头车一般用什么车| 艺伎什么意思| 9.29是什么星座| 58岁属什么生肖| 粗鄙什么意思| 空气湿度是什么意思| 为什么会甲亢| 不喜欢是什么意思| 愚孝什么意思| 开什么店好赚钱| 什么星空| 降压灵又叫什么| 私募是什么| 太阳是什么颜色的| 外贸原单是什么意思| 中性粒细胞百分比偏低什么意思| 给朋友送什么礼物好| 失眠睡不着吃什么药好| 霜对什么| 10月17是什么星座| 香蕉不能和什么水果一起吃| 鸡飞狗跳是什么意思| 梦见水是什么征兆| 停诊是什么意思| 酸奶用什么菌发酵| 做什么生意挣钱| 鸽子吃什么粮食| 乙肝表面抗体是什么意思| 南瓜不能和什么同吃| 烧伤病人吃什么恢复快| 有什么好看的美剧| 霸道是什么车| cta什么意思| 变爻是什么意思| 乙肝表面抗体高是什么意思| 血红素高是什么原因| 采阴补阳是什么意思| 6月22什么星座| 尿微量白蛋白高吃什么药| 19朵玫瑰代表什么意思| 为什么会得口腔溃疡| 脑萎缩是什么原因引起的| 甲亢吃什么好| 水垢是什么| 白细胞低是什么原因造成的| moi是什么意思| 宫颈ecc是什么意思| 特派员是什么级别| 援交是什么意思| 口缘字一半念什么| 红细胞是什么| 肛窦炎用什么药| 九月十号是什么节日| 马卡龙是什么| 什么血型容易溶血| 胃粘膜损伤吃什么药| 监护是什么意思| 金与什么相生相克| 肺纤维灶是什么意思| prince是什么牌子| fdp是什么意思| 毛肚是什么东西| 狮子座和什么座最配对| 梦见黑色的蛇是什么意思| 日照是什么海| 118号是什么星座| 牛在五行中属什么| 酒曲是什么| 10月31日什么星座| 政五行属什么| 全光谱是什么意思| 副乳是什么原因造成的| 来例假不能吃什么| 眼袋是什么原因造成的| 为什么没人敢动景甜| 尿里有泡沫是什么病| 男性下体瘙痒用什么药| 七月初七是什么节| cov是什么意思| 耳朵烫是什么原因| 崩塌的读音是什么| 吃炒黄豆有什么好处和坏处| 黑眼圈是什么原因| 脱线是什么意思| 锦州有什么大学| 女人眉毛稀少代表什么| 长期喝什么茶能降三高| 蜂蜜水有什么好处| 结婚有什么好处| 拖累是什么意思| 1964年属什么的| 功高震主是什么意思| 面霜是什么| 斗鱼吃什么食物| 维生素e有什么作用| aww是什么意思| 丝瓜络是什么东西| suki是什么意思| 电邮地址是什么| 什么是红斑狼疮病| 耐人寻味什么意思| 女上位是什么意思| 容易上火是什么原因| 猫喜欢吃什么| 相见不如怀念是什么意思| 尿酸高是什么| 猫驱虫药什么牌子好| 耽美什么意思| 口苦口干是什么原因引起的| 什么石穿| 情妇是什么意思| 鼻涕粘稠是什么原因| 哈利波特是什么意思| 扩心病是什么病| 金针菇为什么不能消化| 貂蝉是什么意思| 咳嗽吃什么药最好| 破壁机什么牌子的最好| 侬是什么意思| 生姜水泡脚有什么好处| 骑马标志是什么牌子| 骨质增生吃什么药效果好| 男人吃西红柿有什么好处| 什么的大象| 怀孕建档是什么意思| 什么地照着| 磨皮是什么意思| 晚上做噩梦是什么原因| hr是什么职业| 字什么意思| 干白是什么酒| 79属什么生肖| 软糯什么意思| 我国计划生育什么时候开始| 不寐病是什么意思| 玉米不能和什么食物一起吃| 铁娘子是什么意思| 羊胡子疮用什么药膏| 左眼皮跳是什么预兆呢| 过奖了是什么意思| 绿茶喝多了有什么危害| 胃酸是什么颜色的| 什么体质人容易长脚气| 浅褐色是什么颜色| pop是什么意思| 来月经小腹痛是什么原因| 去海边玩需要带什么| 婉甸女装属于什么档次| 目赤是什么症状| 两岁宝宝坐飞机需要什么证件| 送爸爸什么礼物最实用| 河马吃什么食物| 健身后应该吃什么| 造影是什么意思| 生发吃什么食物好| 单核细胞偏高是什么意思| 桥本氏甲状腺炎吃什么药| 邪祟是什么意思| 什么是食品安全| 初恋是什么| 刚刚邹城出什么大事了| 走花路是什么意思| 百度Jump to content

瘦身要抓住6个关键时期 6个饮食习惯让你轻松瘦下来

From Wikipedia, the free encyclopedia
(Redirected from Finite language)
百度 通过走进企业交流座谈,大家能相互了解,加深情感交流,启迪发展思路,开阔工作视野,促进共同发展。

In theoretical computer science and formal language theory, a regular language (also called a rational language)[1][2] is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expression engines, which are augmented with features that allow the recognition of non-regular languages).

Alternatively, a regular language can be defined as a language recognised by a finite automaton. The equivalence of regular expressions and finite automata is known as Kleene's theorem[3] (after American mathematician Stephen Cole Kleene). In the Chomsky hierarchy, regular languages are the languages generated by Type-3 grammars.

Formal definition

[edit]

The collection of regular languages over an alphabet Σ is defined recursively as follows:

  • The empty language ? is a regular language.
  • For each a ∈ Σ (a belongs to Σ), the singleton language {a} is a regular language.
  • If A is a regular language, A* (Kleene star) is a regular language. Due to this, the empty string language {ε} is also regular.
  • If A and B are regular languages, then AB (union) and A ? B (concatenation) are regular languages.
  • No other languages over Σ are regular.

See Regular expression § Formal language theory for syntax and semantics of regular expressions.

Examples

[edit]

All finite languages are regular; in particular the empty string language {ε} = ?* is regular. Other typical examples include the language consisting of all strings over the alphabet {a, b} which contain an even number of as, or the language consisting of all strings of the form: several as followed by several bs.

A simple example of a language that is not regular is the set of strings {anbn | n ≥ 0}.[4] Intuitively, it cannot be recognized with a finite automaton, since a finite automaton has finite memory and it cannot remember the exact number of a's. Techniques to prove this fact rigorously are given below.

Equivalent formalisms

[edit]

A regular language satisfies the following equivalent properties:

  1. it is the language of a regular expression (by the above definition)
  2. it is the language accepted by a nondeterministic finite automaton (NFA)[note 1][note 2]
  3. it is the language accepted by a deterministic finite automaton (DFA)[note 3][note 4]
  4. it can be generated by a regular grammar[note 5][note 6]
  5. it is the language accepted by an alternating finite automaton
  6. it is the language accepted by a two-way finite automaton
  7. it can be generated by a prefix grammar
  8. it can be accepted by a read-only Turing machine
  9. it can be defined in monadic second-order logic (Büchi–Elgot–Trakhtenbrot theorem)[5]
  10. it is recognized by some finite syntactic monoid M, meaning it is the preimage {w ∈ Σ* | f(w) ∈ S} of a subset S of a finite monoid M under a monoid homomorphism f : Σ*M from the free monoid on its alphabet[note 7]
  11. the number of equivalence classes of its syntactic congruence is finite.[note 8][note 9] (This number equals the number of states of the minimal deterministic finite automaton accepting L.)

Properties 10. and 11. are purely algebraic approaches to define regular languages; a similar set of statements can be formulated for a monoid M ? Σ*. In this case, equivalence over M leads to the concept of a recognizable language.

Some authors use one of the above properties different from "1." as an alternative definition of regular languages.

Some of the equivalences above, particularly those among the first four formalisms, are called Kleene's theorem in textbooks. Precisely which one (or which subset) is called such varies between authors. One textbook calls the equivalence of regular expressions and NFAs ("1." and "2." above) "Kleene's theorem".[6] Another textbook calls the equivalence of regular expressions and DFAs ("1." and "3." above) "Kleene's theorem".[7] Two other textbooks first prove the expressive equivalence of NFAs and DFAs ("2." and "3.") and then state "Kleene's theorem" as the equivalence between regular expressions and finite automata (the latter said to describe "recognizable languages").[2][8] A linguistically oriented text first equates regular grammars ("4." above) with DFAs and NFAs, calls the languages generated by (any of) these "regular", after which it introduces regular expressions which it terms to describe "rational languages", and finally states "Kleene's theorem" as the coincidence of regular and rational languages.[9] Other authors simply define "rational expression" and "regular expressions" as synonymous and do the same with "rational languages" and "regular languages".[1][2]

Apparently, the term regular originates from a 1951 technical report where Kleene introduced regular events and explicitly welcomed "any suggestions as to a more descriptive term".[10] Noam Chomsky, in his 1959 seminal article, used the term regular in a different meaning at first (referring to what is called Chomsky normal form today),[11] but noticed that his finite state languages were equivalent to Kleene's regular events.[12]

Closure properties

[edit]

The regular languages are closed under various operations, that is, if the languages K and L are regular, so is the result of the following operations:

  • the set-theoretic Boolean operations: union KL, intersection KL, and complement L, hence also relative complement K ? L.[13]
  • the regular operations: KL, concatenation ??, and Kleene star L*.[14]
  • the trio operations: string homomorphism, inverse string homomorphism, and intersection with regular languages. As a consequence they are closed under arbitrary finite state transductions, like quotient K / L with a regular language. Even more, regular languages are closed under quotients with arbitrary languages: If L is regular then L / K is regular for any K.[15]
  • the reverse (or mirror image) LR.[16] Given a nondeterministic finite automaton to recognize L, an automaton for LR can be obtained by reversing all transitions and interchanging starting and finishing states. This may result in multiple starting states; ε-transitions can be used to join them.

Decidability properties

[edit]

Given two deterministic finite automata A and B, it is decidable whether they accept the same language.[17] As a consequence, using the above closure properties, the following problems are also decidable for arbitrarily given deterministic finite automata A and B, with accepted languages LA and LB, respectively:

  • Containment: is LA ? LB ?[note 10]
  • Disjointness: is LALB = {} ?
  • Emptiness: is LA = {} ?
  • Universality: is LA = Σ* ?
  • Membership: given a ∈ Σ*, is aLB ?

For regular expressions, the universality problem is NP-complete already for a singleton alphabet.[18] For larger alphabets, that problem is PSPACE-complete.[19] If regular expressions are extended to allow also a squaring operator, with "A2" denoting the same as "AA", still just regular languages can be described, but the universality problem has an exponential space lower bound,[20][21][22] and is in fact complete for exponential space with respect to polynomial-time reduction.[23]

For a fixed finite alphabet, the theory of the set of all languages – together with strings, membership of a string in a language, and for each character, a function to append the character to a string (and no other operations) – is decidable, and its minimal elementary substructure consists precisely of regular languages. For a binary alphabet, the theory is called S2S.[24]

Complexity results

[edit]

In computational complexity theory, the complexity class of all regular languages is sometimes referred to as REGULAR or REG and equals DSPACE(O(1)), the decision problems that can be solved in constant space (the space used is independent of the input size). REGULARAC0, since it (trivially) contains the parity problem of determining whether the number of 1 bits in the input is even or odd and this problem is not in AC0.[25] On the other hand, REGULAR does not contain AC0, because the nonregular language of palindromes, or the nonregular language can both be recognized in AC0.[26]

If a language is not regular, it requires a machine with at least Ω(log log n) space to recognize (where n is the input size).[27] In other words, DSPACE(o(log log n)) equals the class of regular languages. In practice, most nonregular problems are solved by machines taking at least logarithmic space.

Location in the Chomsky hierarchy

[edit]
Regular language in classes of Chomsky hierarchy

To locate the regular languages in the Chomsky hierarchy, one notices that every regular language is context-free. The converse is not true: for example, the language consisting of all strings having the same number of as as bs is context-free but not regular. To prove that a language is not regular, one often uses the Myhill–Nerode theorem and the pumping lemma. Other approaches include using the closure properties of regular languages[28] or quantifying Kolmogorov complexity.[29]

Important subclasses of regular languages include:

  • Finite languages, those containing only a finite number of words.[30] These are regular languages, as one can create a regular expression that is the union of every word in the language.
  • Star-free languages, those that can be described by a regular expression constructed from the empty symbol, letters, concatenation and all Boolean operators (see algebra of sets) including complementation but not the Kleene star: this class includes all finite languages.[31]

Number of words in a regular language

[edit]

Let denote the number of words of length in . The ordinary generating function for L is the formal power series

The generating function of a language L is a rational function if L is regular.[32] Hence for every regular language the sequence is constant-recursive; that is, there exist an integer constant , complex constants and complex polynomials such that for every the number of words of length in is .[33][34][35][36]

Thus, non-regularity of certain languages can be proved by counting the words of a given length in . Consider, for example, the Dyck language of strings of balanced parentheses. The number of words of length in the Dyck language is equal to the Catalan number , which is not of the form , witnessing the non-regularity of the Dyck language. Care must be taken since some of the eigenvalues could have the same magnitude. For example, the number of words of length in the language of all even binary words is not of the form , but the number of words of even or odd length are of this form; the corresponding eigenvalues are . In general, for every regular language there exists a constant such that for all , the number of words of length is asymptotically .[37]

The zeta function of a language L is[32]

The zeta function of a regular language is not in general rational, but that of an arbitrary cyclic language is.[38][39]

Generalizations

[edit]

The notion of a regular language has been generalized to infinite words (see ω-automata) and to trees (see tree automaton).

Rational set generalizes the notion (of regular/rational language) to monoids that are not necessarily free. Likewise, the notion of a recognizable language (by a finite automaton) has namesake as recognizable set over a monoid that is not necessarily free. Howard Straubing notes in relation to these facts that “The term "regular language" is a bit unfortunate. Papers influenced by Eilenberg's monograph[40] often use either the term "recognizable language", which refers to the behavior of automata, or "rational language", which refers to important analogies between regular expressions and rational power series. (In fact, Eilenberg defines rational and recognizable subsets of arbitrary monoids; the two notions do not, in general, coincide.) This terminology, while better motivated, never really caught on, and "regular language" is used almost universally.”[41]

Rational series is another generalization, this time in the context of a formal power series over a semiring. This approach gives rise to weighted rational expressions and weighted automata. In this algebraic context, the regular languages (corresponding to Boolean-weighted rational expressions) are usually called rational languages.[42][43] Also in this context, Kleene's theorem finds a generalization called the Kleene–Schützenberger theorem.

Learning from examples

[edit]

Notes

[edit]
  1. ^ 1. ? 2. by Thompson's construction algorithm
  2. ^ 2. ? 1. by Kleene's algorithm or using Arden's lemma
  3. ^ 2. ? 3. by the powerset construction
  4. ^ 3. ? 2. since the former definition is stronger than the latter
  5. ^ 2. ? 4. see Hopcroft, Ullman (1979), Theorem 9.2, p.219
  6. ^ 4. ? 2. see Hopcroft, Ullman (1979), Theorem 9.1, p.218
  7. ^ 3. ? 10. by the Myhill–Nerode theorem
  8. ^ u ~ v is defined as: uwL if and only if vwL for all w ∈ Σ*
  9. ^ 3. ? 11. see the proof in the Syntactic monoid article, and see p. 160 in Holcombe, W.M.L. (1982). Algebraic automata theory. Cambridge Studies in Advanced Mathematics. Vol. 1. Cambridge University Press. ISBN 0-521-60492-3. Zbl 0489.68046.
  10. ^ Check if LALB = LA. Deciding this property is NP-hard in general; see File:RegSubsetNP.pdf for an illustration of the proof idea.

References

[edit]
  1. ^ a b Ruslan Mitkov (2003). The Oxford Handbook of Computational Linguistics. Oxford University Press. p. 754. ISBN 978-0-19-927634-9.
  2. ^ a b c Mark V. Lawson (2003). Finite Automata. CRC Press. pp. 98–103. ISBN 978-1-58488-255-8.
  3. ^ Sheng Yu (1997). "Regular languages". In Grzegorz Rozenberg; Arto Salomaa (eds.). Handbook of Formal Languages: Volume 1. Word, Language, Grammar. Springer. p. 41. ISBN 978-3-540-60420-4.
  4. ^ Eilenberg (1974), p. 16 (Example II, 2.8) and p. 25 (Example II, 5.2).
  5. ^ M. Weyer: Chapter 12 - Decidability of S1S and S2S, p. 219, Theorem 12.26. In: Erich Gr?del, Wolfgang Thomas, Thomas Wilke (Eds.): Automata, Logics, and Infinite Games: A Guide to Current Research. Lecture Notes in Computer Science 2500, Springer 2002.
  6. ^ Robert Sedgewick; Kevin Daniel Wayne (2011). Algorithms. Addison-Wesley Professional. p. 794. ISBN 978-0-321-57351-3.
  7. ^ Jean-Paul Allouche; Jeffrey Shallit (2003). Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press. p. 129. ISBN 978-0-521-82332-6.
  8. ^ Kenneth Rosen (2011). Discrete Mathematics and Its Applications 7th edition. McGraw-Hill Science. pp. 873–880.
  9. ^ Horst Bunke; Alberto Sanfeliu (January 1990). Syntactic and Structural Pattern Recognition: Theory and Applications. World Scientific. p. 248. ISBN 978-9971-5-0566-0.
  10. ^ Stephen Cole Kleene (Dec 1951). Representation of Events in Nerve Nets and Finite Automata (PDF) (Research Memorandum). U.S. Air Force / RAND Corporation. Here: p.46
  11. ^ Noam Chomsky (1959). "On Certain Formal Properties of Grammars" (PDF). Information and Control. 2 (2): 137–167. doi:10.1016/S0019-9958(59)90362-6. Here: Definition 8, p.149
  12. ^ Chomsky 1959, Footnote 10, p.150
  13. ^ Salomaa (1981) p.28
  14. ^ Salomaa (1981) p.27
  15. ^ Fellows, Michael R.; Langston, Michael A. (1991). "Constructivity issues in graph algorithms". In Myers, J. Paul Jr.; O'Donnell, Michael J. (eds.). Constructivity in Computer Science, Summer Symposium, San Antonio, Texas, USA, June 19-22, Proceedings. Lecture Notes in Computer Science. Vol. 613. Springer. pp. 150–158. doi:10.1007/BFB0021088. ISBN 978-3-540-55631-2.
  16. ^ Hopcroft, Ullman (1979), Chapter 3, Exercise 3.4g, p. 72
  17. ^ Hopcroft, Ullman (1979), Theorem 3.8, p.64; see also Theorem 3.10, p.67
  18. ^ Aho, Hopcroft, Ullman (1974), Exercise 10.14, p.401
  19. ^ Aho, Hopcroft, Ullman (1974), Theorem 10.14, p399
  20. ^ Hopcroft, Ullman (1979), Theorem 13.15, p.351
  21. ^ A.R. Meyer & L.J. Stockmeyer (Oct 1972). The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space (PDF). 13th Annual IEEE Symp. on Switching and Automata Theory. pp. 125–129.
  22. ^ L. J. Stockmeyer; A. R. Meyer (1973). "Word Problems Requiring Exponential Time". Proc. 5th ann. symp. on Theory of computing (STOC) (PDF). ACM. pp. 1–9.
  23. ^ Hopcroft, Ullman (1979), Corollary p.353
  24. ^ Weyer, Mark (2002). "Decidability of S1S and S2S". Automata, Logics, and Infinite Games. Lecture Notes in Computer Science. Vol. 2500. Springer. pp. 207–230. doi:10.1007/3-540-36387-4_12. ISBN 978-3-540-00388-5.
  25. ^ Furst, Merrick; Saxe, James B.; Sipser, Michael (1984). "Parity, circuits, and the polynomial-time hierarchy". Mathematical Systems Theory. 17 (1): 13–27. doi:10.1007/BF01744431. MR 0738749. S2CID 14677270.
  26. ^ Cook, Stephen; Nguyen, Phuong (2010). Logical foundations of proof complexity (1. publ. ed.). Ithaca, NY: Association for Symbolic Logic. p. 75. ISBN 978-0-521-51729-4.
  27. ^ J. Hartmanis, P. L. Lewis II, and R. E. Stearns. Hierarchies of memory-limited computations. Proceedings of the 6th Annual IEEE Symposium on Switching Circuit Theory and Logic Design, pp. 179–190. 1965.
  28. ^ "How to prove that a language is not regular?". cs.stackexchange.com. Retrieved 10 April 2018.
  29. ^ Hromkovi?, Juraj (2004). Theoretical computer science: Introduction to Automata, Computability, Complexity, Algorithmics, Randomization, Communication, and Cryptography. Springer. pp. 76–77. ISBN 3-540-14015-8. OCLC 53007120.
  30. ^ A finite language should not be confused with a (usually infinite) language generated by a finite automaton.
  31. ^ Volker Diekert; Paul Gastin (2008). "First-order definable languages" (PDF). In J?rg Flum; Erich Gr?del; Thomas Wilke (eds.). Logic and automata: history and perspectives. Amsterdam University Press. ISBN 978-90-5356-576-6.
  32. ^ a b Honkala, Juha (1989). "A necessary condition for the rationality of the zeta function of a regular language". Theor. Comput. Sci. 66 (3): 341–347. doi:10.1016/0304-3975(89)90159-x. Zbl 0675.68034.
  33. ^ Flajolet & Sedgweick, section V.3.1, equation (13).
  34. ^ "Number of words in the regular language $(00)^*$". cs.stackexchange.com. Retrieved 10 April 2018.
  35. ^ "Proof of theorem for arbitrary DFAs".
  36. ^ "Number of words of a given length in a regular language". cs.stackexchange.com. Retrieved 10 April 2018.
  37. ^ Flajolet & Sedgewick (2002) Theorem V.3
  38. ^ Berstel, Jean; Reutenauer, Christophe (1990). "Zeta functions of formal languages". Trans. Am. Math. Soc. 321 (2): 533–546. CiteSeerX 10.1.1.309.3005. doi:10.1090/s0002-9947-1990-0998123-x. Zbl 0797.68092.
  39. ^ Berstel & Reutenauer (2011) p.222
  40. ^ Samuel Eilenberg. Automata, languages, and machines. Academic Press. in two volumes "A" (1974, ISBN 9780080873749) and "B" (1976, ISBN 9780080873756), the latter with two chapters by Bret Tilson.
  41. ^ Straubing, Howard (1994). Finite automata, formal logic, and circuit complexity. Progress in Theoretical Computer Science. Basel: Birkh?user. p. 8. ISBN 3-7643-3719-2. Zbl 0816.68086.
  42. ^ Berstel & Reutenauer (2011) p.47
  43. ^ Sakarovitch, Jacques (2009). Elements of automata theory. Translated from the French by Reuben Thomas. Cambridge: Cambridge University Press. p. 86. ISBN 978-0-521-84425-3. Zbl 1188.68177.

Further reading

[edit]
  • Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956); it is a slightly modified version of his 1951 RAND Corporation report of the same title, RM704.
  • Sakarovitch, J (1987). "Kleene's theorem revisited". Trends, Techniques, and Problems in Theoretical Computer Science. Lecture Notes in Computer Science. Vol. 1987. pp. 39–50. doi:10.1007/3540185356_29. ISBN 978-3-540-18535-2.
[edit]
1664是什么酒 鸡血藤长什么样子图片 什么的果子 24k镀金是什么意思 小儿惊痫是什么症状
坐骨神经痛是什么症状 海棠什么时候开花 蝴蝶代表什么生肖 中国特工组织叫什么 夜不能寐是什么意思
甲状腺偏高有什么影响 情绪什么意思 罗汉果是什么 冗长什么意思 圆坟是什么意思
loreal是什么品牌 食物链是什么意思 什么时候做nt 胃镜挂什么科 鸡眼用什么药好
孩子皮肤黑是什么原因hcv9jop7ns2r.cn 扁桃体疼吃什么药hcv8jop0ns3r.cn 轻度脂肪肝有什么症状hcv7jop6ns1r.cn 婴儿乳糖不耐受吃什么奶粉hcv9jop6ns5r.cn 活好的女人有什么表现hcv7jop5ns1r.cn
肾结石吃什么比较好hcv9jop4ns9r.cn 炭疽病用什么农药最好hcv8jop8ns2r.cn 孕妇吃什么盐最好hcv9jop0ns7r.cn 男人硬不起来该吃什么药hcv7jop5ns2r.cn 最近天气为什么这么热hcv8jop6ns8r.cn
小孩打喷嚏流鼻涕吃什么药hcv8jop4ns8r.cn 小蛮腰是什么意思hcv7jop9ns6r.cn 左手麻木什么原因hcv8jop2ns5r.cn 陈赫是什么星座的onlinewuye.com 丙肝病毒抗体阴性是什么意思hcv9jop5ns3r.cn
亲和力是什么意思hcv8jop0ns2r.cn 柠檬泡水喝有什么作用hcv8jop2ns3r.cn nt检查需要注意什么hcv9jop2ns1r.cn 拉血是什么原因hcv7jop7ns1r.cn 你喜欢我什么我改hcv8jop6ns3r.cn
百度