用甲硝唑栓有什么反应| 白细胞低吃什么药可以增加白细胞| 酸菜炒什么好吃| 什么属相不适合养鱼| 妈妈是什么意思| 为什么新生儿会有黄疸| 螳螂吃什么食物| 无畏布施是什么意思| 盆底肌松弛有什么影响| 王字加一笔是什么字| 甲减是一种什么病| 腿麻脚麻用什么药能治| 吃什么有助于骨头愈合| 梦见好多衣服是什么意思| 邓超的公司叫什么名字| 羽加立念什么| 呦呦鹿鸣什么意思| 丁香泡水喝有什么功效和作用| 印迹杂交技术检查什么| 菲林是什么| 增殖灶是什么意思| 什么是假性自闭症| 吃什么能胖起来| 高血压吃什么中药| 清蒸鱼一般用什么鱼| 霸天虎和威震天是什么关系| 尿液很黄是什么原因| 右手臂痛是什么预兆| 甲功是什么意思| 七月九号是什么日子| 移植后要注意什么| 为什么喉咙经常痛| 什么解酒| 珑骧包属于什么档次| 梦见栽树是什么意思| 农历11月11日是什么星座| 姓彭的女孩子取什么名字好| 冰冻三尺非一日之寒是什么意思| 1987年属什么今年多大| lalpina是什么牌子| 药流可以吃什么水果| 试管婴儿是什么意思| 梨花代表什么生肖| 天涯是什么意思| 梦见殡仪馆是什么意思| 陶土样大便见于什么病| 胰腺炎吃什么消炎药| 春什么秋什么的成语| 科目三为什么这么难| 脐炎用什么药| b站是什么| 汽球是什么生肖| 格林巴利综合症是什么病| 河里的贝壳叫什么| 海洋中最大的动物是什么| 聪明的近义词是什么| 梦见吃药是什么意思| 心服口服的意思是什么| 20属什么| 柠檬有什么作用| 麝香是什么东西| 压车是什么意思| 肝什么相照| 为什么广州叫羊城| 热病是什么病| 充电宝100wh是什么意思| 回盲部憩室是什么意思| 血管瘤是什么症状| 梦见偷玉米是什么意思| 的确良是什么面料| 扶苏是什么意思| 吃什么增加免疫力| 引火下行是什么意思| 大步向前走永远不回头是什么歌| 一一是什么意思| 前列腺钙化是什么原因引起的| 凝血因子是什么| 什么是复句| 包饺子是什么意思| 骨膜炎是什么症状| 亲嘴会传染什么病| 双星座是什么意思| 心经讲的是什么| 晚饭吃什么好| 通草和什么炖最催奶了| 氨酶偏高是什么意思| 什么是性格| 手脚心发热是什么原因| 朱砂痣什么意思| 身上出汗多是什么原因| 葡萄和什么不能一起吃| 外阴白斑吃什么药| 益气固表是什么意思| 环切是什么意思| 大义是什么意思| 孩子大便出血什么原因| 男人时间短吃什么药| 什么牌子的燃气灶质量好| 女人为什么会喷水| 预判是什么意思| 小丑代表什么生肖| 女人绝经一般在什么年龄段| 八仙茶属于什么茶| 布谷鸟叫有什么征兆| 皮肤干燥缺什么维生素| 姓陆的女孩取什么名字好| 大蒜有什么功效| 一个大一个小念什么| 促甲状腺素高是什么原因| 尿酸高平时要注意什么| 心律失常是什么症状| 呵是什么意思| 心电图是什么| 胰腺炎吃什么消炎药| 肚子上方中间疼是什么部位| 江苏龙虾盱眙读什么| 腰疼吃什么药好| 脸上不停的长痘痘是什么原因| 置之死地而后生是什么意思| 一什么屏风| 肚子拉稀像水一样是什么情况| 盐巴是什么| 头发油性大是什么原因| 脉细是什么意思| 停经吃什么能来月经| 黄墙绿地的作用是什么| 新生儿拉肚子是什么原因引起的| 为什么老是| 08属什么生肖| 仙人掌能治什么病| 属虎男和什么属相最配| 尿道口流白色液体是什么病| 什么叫间质性肺病| 神经衰弱什么症状| 吃什么头发长得快| 牙齿发黑是什么原因| 8月24号是什么星座| 亚硝酸盐阴性是什么意思| 一个火一个羽一个白念什么| 掉头发缺少什么维生素| 黄豆吃多了有什么坏处| 熊猫为什么被称为国宝| 霜降出什么生肖| 半月板是什么部位| 4月1日什么星座| 方圆是什么意思| 一什么茶| 义举是什么意思| 皋读什么| 巴扎是什么意思| 做是什么感觉| 排骨烧什么好吃| 什么是绘本| 偶发室性早搏什么意思| bpd是胎儿的什么意思| 虢是什么意思| btc是什么意思| 5月13日什么星座| 补气固表什么意思| 瘟疫是什么病| 胶原蛋白的成分是什么| 伊朗是什么派| 手脚脱皮吃什么维生素| 当医生学什么专业| 古代新疆叫什么| 天天都需要你爱是什么歌| 老人流口水是什么原因引起的| 女人吃什么对卵巢和子宫好| 外阴长水泡是什么原因| 木鱼花是什么做的| pbc是什么意思| 女人吃玛卡有什么好处| 滋养细胞疾病是什么病| 膈肌痉挛吃什么药| 肚子饿了为什么会叫| 月亮是什么星| 无期徒刑什么意思| 词讼是什么意思| 绿卡有什么用| 后是什么意思| 小孩血糖高是什么原因引起的| 右眼一直跳是因为什么原因| 新疆人是什么人种| 想吐吃什么药可以缓解| 公主切适合什么脸型| 努尔哈赤是什么意思| 做t是什么意思| 忌入宅是什么意思| 蛋白质高是什么原因| 为什么会长脂肪瘤| 血常规是什么| 你会不会突然的出现是什么歌| 县长是什么级别的干部| 毓读什么| 离岗是什么意思| 尿泡沫多吃什么药| 眼睛疲劳用什么眼药水| 女人的秘密是什么| 什么血型最好| 眼圈黑是什么原因| 打火机的气体是什么| 小肠换气吃什么药| 50pcs是什么意思| 什么是科学| 4月26日什么星座| 梦到装修房子是什么征兆| 大便次数增多是什么原因| 肝内小囊肿是什么意思| 女性气血不足吃什么调理| 做胃镜之前需要做什么准备| po医学上是什么意思| 馒头配什么菜好吃| 膝盖不好的人适合什么运动| 什么叫集体户口| 什么是碱性水| 男性为什么长丝状疣| 喜欢放屁是什么原因| 什么饮料好喝| 傲气是什么意思| us检查是什么意思| cold是什么意思| 得艾滋病的前兆是什么| 什么是飞机杯| nacl是什么| pv是什么材质| 沉不住气什么意思| 反馈是什么意思| 缠绵是什么意思| 尿妊娠试验是检查什么| 2月什么星座的| 低压偏高什么原因| 什么是变异性哮喘| 2024年属什么生肖| 什么之心路人皆知| 印第安人属于什么人种| 心疼是什么原因| 孕妇可以吃什么零食| 严什么的态度| 编程是干什么的| 精液发红是什么原因| 乌鸦嘴是什么意思| 加湿器用什么水比较好| 为什么会晕血| 什么叫情劫| 什么糖最甜| 脚臭用什么洗效果最好| 韭菜什么时候种最合适| 雀神是什么意思| 6.10号是什么星座| 什么是生长纹| 周六左眼跳是什么预兆| 什么是结肠炎| 心脏早搏有什么危险| HPV高危亚型52阳性什么意思| 洗头什么时间洗最好| 荷花鱼是什么鱼| 宫外孕术后可以吃什么| 雀舌是什么茶| 长痱子是什么原因| 水冲脉见于什么病| 三点水一个分读什么| 十二月二十三是什么星座| 别无他求是什么意思| 外阴痒是什么原因| 百度Jump to content

"二孩"来了,师资怎样了?"产假式师资缺口"如何解

From Wikipedia, the free encyclopedia
百度 峰会举办至今,获得了大量业界领军人物的认可和支持,形成了一个稳定的思想交流平台。

In computer science, more specifically in automata and formal language theory, nested words are a concept proposed by Alur and Madhusudan as a joint generalization of words, as traditionally used for modelling linearly ordered structures, and of ordered unranked trees, as traditionally used for modelling hierarchical structures. Finite-state acceptors for nested words, so-called nested word automata, then give a more expressive generalization of finite automata on words. The linear encodings of languages accepted by finite nested word automata gives the class of visibly pushdown languages. The latter language class lies properly between the regular languages and the deterministic context-free languages. Since their introduction in 2004, these concepts have triggered much research in that area.[1]

Formal definition

[edit]

To define nested words, first define matching relations. For a nonnegative integer , the notation denotes the set , with the special case .

A matching relation ? of length is a subset of such that:

  1. all nesting edges are forward, that is, if i ? j then i < j;
  2. nesting edges never have a finite position in common, that is, for ?∞ < i < ∞, there is at most one position h such that h ? i, and there is at most one position j such that i ? j; and
  3. nesting edges never cross, that is, there are no i < i?′ ≤ j < j?′ such that both i ? j and i?′ ? j?′.

A position i is referred to as

  • a call position, if i ? j for some j,
  • a pending call if i ? ∞,
  • a return position, if h ? i for some h,
  • a pending return if ?∞ ? i, and
  • an internal position in all remaining cases.

A nested word of length over an alphabet Σ is a pair (w,?), where w is a word, or string, of length over Σ and ? is a matching relation of length .

Encoding nested words into ordinary words

[edit]

Nested words over the alphabet can be encoded into "ordinary" words over the tagged alphabet , in which each symbol a from Σ has three tagged counterparts: the symbol ?a for encoding a call position in a nested word labelled with a, the symbol a? for encoding a return position labelled with a, and finally the symbol a itself for representing an internal position labelled with a. More precisely, let φ be the function mapping nested words over Σ to words over such that each nested word (,?) is mapped to the word , where the letter equals ?a, a, and a?, if and i is a (possibly pending) call position, an internal position, and a (possibly pending) return position, respectively.

Example

[edit]

For illustration, let n = (w,?) be the nested word over a ternary alphabet with w=abaabccca and matching relation ? = {(?∞,1),(2,∞),(3,4),(5,7),(8,∞)}. Then its encoding as word reads as φ(n) = a??b?aa??bcc??ca.

Automata

[edit]

Nested word automaton

[edit]

A nested word automaton has a finite number of states, and operates in almost the same way as a deterministic finite automaton on classical strings: a classical finite automaton reads the input word from left to right, and the state of the automaton after reading the jth letter depends on the state in which the automaton was before reading .

In a nested word automaton, the position in the nested word (w,?) might be a return position; if so, the state after reading will not only depend on the linear state in which the automaton was before reading , but also on a hierarchical state propagated by the automaton at the time it was in the corresponding call position. In analogy to regular languages of words, a set L of nested words is called regular if it is accepted by some (finite-state) nested word automaton.

Visibly pushdown automaton

[edit]

Nested word automata are an automaton model accepting nested words. There is an equivalent automaton model operating on (ordinary) words. Namely, the notion of a deterministic visibly pushdown automaton is a restriction of the notion of a deterministic pushdown automaton.

Following Alur and Madhusudan,[2] a deterministic visibly pushdown automaton is formally defined as a 6-tuple where

  • is a finite set of states,
  • is the input alphabet, which – in contrast to that of ordinary pushdown automata – is partitioned into three sets , , and . The alphabet denotes the set of call symbols, contains the return symbols, and the set contains the internal symbols,
  • is a finite set which is called the stack alphabet, containing a special symbol denoting the empty stack,
  • is the transition function, which is partitioned into three parts corresponding to call transitions, return transitions, and internal transitions, namely
    • , the call transition function
    • , the return transition function
    • , the internal transition function,
  • is the initial state, and
  • is the set of accepting states.

The notion of computation of a visibly pushdown automaton is a restriction of the one used for pushdown automata. Visibly pushdown automata only add a symbol to the stack when reading a call symbol , they only remove the top element from the stack when reading a return symbol and they do not alter the stack when reading an internal event . A computation ending in an accepting state is an accepting computation.

As a result, a visibly pushdown automaton cannot push to and pop from the stack with the same input symbol. Thus the language cannot be accepted by a visibly pushdown automaton for any partition of , however there are pushdown automata accepting this language.

If a language over a tagged alphabet is accepted by a deterministic visibly pushdown automaton, then is called a visibly pushdown language.

Nondeterministic visibly pushdown automata

[edit]

Nondeterministic visibly pushdown automata are as expressive as deterministic ones. Hence one can transform a nondeterministic visibly pushdown automaton into a deterministic one, but if the nondeterministic automaton had states, the deterministic one may have up to states.[3]

Decision problems

[edit]

Let be the size of the description of an automaton , then it is possible to check if a word n is accepted by the automaton in time . In particular, the emptiness problem is solvable in time . If is fixed, it is decidable in time and space where is the depth of n in a streaming seeing. It is also decidable with space and time , and by a uniform Boolean circuit of depth .[2]

For two nondeterministic automata A and B, deciding whether the set of words accepted by A is a subset of the word accepted by B is EXPTIME-complete. It is also EXPTIME-complete to figure out if there is a word that is not accepted.[2]

Languages

[edit]

As the definition of visibly pushdown automata shows, deterministic visibly pushdown automata can be seen as a special case of deterministic pushdown automata; thus the set VPL of visibly pushdown languages over forms a subset of the set DCFL of deterministic context-free languages over the set of symbols in . In particular, the function that removes the matching relation from nested words transforms regular languages over nested words into context-free languages.

Closure properties

[edit]

The set of visibly pushdown languages is closed under the following operations:[3][2]

  • set operations:
    • union
    • intersection
    • complement,
thus giving rise to a Boolean algebra.

For the intersection operation, one can construct a VPA M simulating two given VPAs and by a simple product construction (Alur & Madhusudan 2004): For , assume is given as . Then for the automaton M, the set of states is , the initial state is , the set of final states is , the stack alphabet is given by , and the initial stack symbol is .

If is in state on reading a call symbol , then pushes the stack symbol and goes to state , where is the stack symbol pushed by when transitioning from state to on reading input .

If is in state on reading an internal symbol , then goes to state , whenever transitions from state to on reading a.

If is in state on reading a return symbol , then pops the symbol from the stack and goes to state , where is the stack symbol popped by when transitioning from state to on reading .

Correctness of the above construction crucially relies on the fact that the push and pop actions of the simulated machines and are synchronized along the input symbols read. In fact, a similar simulation is no longer possible for deterministic pushdown automata, as the larger class of deterministic context-free languages is no longer closed under intersection.

In contrast to the construction for concatenation shown above, the complementation construction for visibly pushdown automata parallels the standard construction[4] for deterministic pushdown automata.

Moreover, like the class of context free languages the class of visibly pushdown languages is closed under prefix closure and reversal, hence also suffix closure.

Relation to other language classes

[edit]

Alur & Madhusudan (2004) point out that the visibly pushdown languages are more general than the parenthesis languages suggested in McNaughton (1967). As shown by Crespi Reghizzi & Mandrioli (2012), the visibly pushdown languages in turn are strictly contained in the class of languages described by operator-precedence grammars, which were introduced by Floyd (1963) and enjoy the same closure properties and characteristics (see Lonati et al. (2015) for ω languages and logic and automata-based characterizations). In comparison to conjunctive grammars, a generalization of context-free grammars, Okhotin (2011) shows that the linear conjunctive languages form a superclass of the visibly pushdown languages. The table at the end of this article puts the family of visibly pushdown languages in relation to other language families in the Chomsky hierarchy. Rajeev Alur and Parthasarathy Madhusudan[5][6] related a subclass of regular binary tree languages to visibly pushdown languages.

Other models of description

[edit]

Visibly pushdown grammars

[edit]

Visibly pushdown languages are exactly the languages that can be described by visibly pushdown grammars.[2]

Visibly pushdown grammars can be defined as a restriction of context-free grammars. A visibly pushdown grammar G is defined by the 4-tuple:

where

  • and are disjoint finite sets; each element is called a non-terminal character or a variable. Each variable represents a different type of phrase or clause in the sentence. Each variable defines a sub-language of the language defined by , and the sub-languages of are the one without pending calls or pending returns.
  • is a finite set of terminals, disjoint from , which make up the actual content of the sentence. The set of terminals is the alphabet of the language defined by the grammar .
  • is a finite relation from to such that . The members of are called the (rewrite) rules or productions of the grammar. There are three kinds of rewrite rules. For , and
    • and if then and
    • and if then
  • is the start variable (or start symbol), used to represent the whole sentence (or program).

Here, the asterisk represents the Kleene star operation and is the empty word.

Uniform Boolean circuits

[edit]

The problem whether a word of length is accepted by a given nested word automaton can be solved by uniform Boolean circuits of depth .[2]

Logical description

[edit]

Regular languages over nested words are exactly the set of languages described by monadic second-order logic with two unary predicates call and return, linear successor and the matching relation ?.[2]

See also

[edit]

Notes

[edit]
  1. ^ Google Scholar search results for "nested words" OR "visibly pushdown"
  2. ^ a b c d e f g Alur & Madhusudan (2009)
  3. ^ a b Alur & Madhusudan (2004)
  4. ^ Hopcroft & Ullman (1979, p. 238 f).
  5. ^ Alur, R.; Madhusudan, P. (2004). "Visibly pushdown languages" (PDF). Proceedings of the thirty-sixth annual ACM symposium on Theory of computing - STOC '04. pp. 202–211. doi:10.1145/1007352.1007390. ISBN 978-1581138528. S2CID 7473479. Sect.4, Theorem 5,
  6. ^ Alur, R.; Madhusudan, P. (2009). "Adding nesting structure to words" (PDF). Journal of the ACM. 56 (3): 1–43. CiteSeerX 10.1.1.145.9971. doi:10.1145/1516512.1516518. S2CID 768006. Sect.7

References

[edit]
[edit]
发霉的衣服用什么洗能洗掉 藏红花什么人不能喝 什么叫造影 输尿管不扩张什么意思 生活是什么
pnh是什么病 什么饮料好喝 新生儿湿疹用什么药膏 小孩表演后卸妆用什么 生病吃什么
梦见眼镜蛇是什么预兆 双手合十什么意思 梦见好多猪肉是什么意思 闲暇的意思是什么 田螺的血是什么颜色
鸡心为什么不建议吃 虚火是什么意思 地塞米松是什么药 碱性是什么意思 转移什么意思
自言自语说话是什么病hcv8jop5ns9r.cn 1973年是什么命hcv8jop1ns2r.cn 什么是免疫组化hcv8jop3ns7r.cn 过度紧张会有什么症状hcv7jop7ns0r.cn 气血不足有什么症状hcv9jop8ns3r.cn
芭乐是什么意思hcv7jop6ns4r.cn 生长发育挂什么科hcv7jop4ns7r.cn 间谍是什么意思hcv8jop4ns1r.cn 用印是什么意思sanhestory.com 掉筷子有什么预兆hcv8jop3ns9r.cn
盛情难却是什么意思hcv7jop7ns2r.cn 理性是什么意思96micro.com 5月20号是什么星座hcv8jop8ns3r.cn 肝在人体什么位置jasonfriends.com 中药为什么要热着喝sanhestory.com
除了胃镜还有什么检查胃的方法吗hcv7jop9ns8r.cn 土猪肉和普通猪肉有什么分别hcv7jop9ns8r.cn 为什么一吃饭就胃疼hcv8jop8ns0r.cn 咿呀咿呀哟是什么歌hcv8jop3ns7r.cn 消防队属于什么编制hcv8jop6ns3r.cn
百度