武汉都有什么大学| 拉肚子吃什么| 花园里有什么花| 屁多吃什么药| 什么血型的人招蚊子| kappa是什么牌子| 秦国是现在的什么地方| 子宫什么样子图片| 67什么意思| 吃阿胶对女人有什么好处| 一只眼睛肿了是什么原因| 辛辣的辛指什么| 为什么会得肾结石| 怨念是什么意思| 有点咳嗽吃什么药| 杨枝甘露是什么意思| 睾丸疼挂什么科| 卤米松软膏主治什么| 农历12月是什么月| snr是什么意思| 想成为什么样的人| 小孩补铁吃什么| 真维斯属于什么档次| 递增是什么意思| 什么是福报| 蒸鱼豉油什么时候放| 帽子戏法是什么意思| 口腔苔藓用什么药| 哺乳期妈妈感冒了可以吃什么药| 须发早白吃什么中成药| 智齿发炎肿痛吃什么药| 嫩牛五方什么意思| 脚麻看什么科室最好| 头疼吃什么药好| 什么茶降糖效果最好| 调御丈夫是什么意思| 是什么药| 爱屋及乌是什么意思| 猴的守护神是什么菩萨| 师父的老公叫什么| 金鱼可以吃什么| iga肾病是什么病| 梦见自己穿新衣服是什么意思| 塔罗牌正位和逆位是什么意思| 水绿色是什么颜色| 家里进蛇有什么预兆| 肝内强回声是什么意思| ad医学上是什么意思| 上行下效是什么意思| 晗是什么意思| 当逃兵会有什么后果| 尿钙是什么意思| 枸杞泡水喝有什么作用和功效| 黍是什么意思| 肚子疼腹泻吃什么药| 抵抗力差是什么原因| 绿色食品是什么意思| 急性腹泻拉水吃什么药| 月经期间喝什么汤好| 十月初四是什么星座| 顶胯是什么意思| 被口是什么感觉| 81年属什么的| 内风湿是什么原因引起的| 地支是什么意思| 生孩子大出血是什么原因造成的| 脂肪瘤吃什么药| 南瓜皮可以吃吗有什么作用| 腰酸胀是什么原因男性| 什么流砥柱| 姜汁可乐有什么功效与作用| 2333是什么意思啊| 静脉曲张吃什么药好| 细菌性阴道炎有什么症状| 食人鱼的天敌是什么| 萨德是什么意思| 吕布的武器叫什么| 心源性哮喘首选什么药| 冬五行属什么| 暇步士是什么档次品牌| 双鱼座是什么星象| 拉肚子拉稀水吃什么药管用| 痔疮手术后可以吃什么水果| 什么能养肝| 高血压2级是什么意思| 为什么会得飞蚊症| 不可理喻什么意思| 东吴在现在什么地方| 电轴右偏什么意思| 张飞穿针的歇后语是什么| 射频是什么| feat什么意思| 吃什么补钙| 女大四岁有什么说法| 处是什么结构| 手臂上长痣代表什么| 胃部间质瘤是什么性质的瘤| 下焦湿热吃什么中成药| 妈妈吃什么帮宝宝排气| 吃什么防止脱发掉发| 多普勒超声检查是什么| 经期吃什么| 来大姨妈不能吃什么水果| 瑶浴是什么意思| 掉头发是身体缺少什么| 喝什么降血糖| 196是什么意思| 女人手心热吃什么调理| 早晨起床口干口苦是什么原因| 好巴适是什么意思| 龟头炎用什么软膏最好| 陈真属什么生肖| 共青团书记是什么级别| 房东是什么意思| 皮肤癣用什么药| H 什么意思| 罪恶感什么意思| 咀嚼什么意思| 叶黄素对眼睛有什么好处| 工作性质是什么| 还俗是什么意思| 什么叫骨折| absolutvodka什么酒| 大排畸和四维的区别是什么| opo是什么| 5.5号是什么星座| 纳米丝是什么面料| 摄政王是什么意思| 病毒四项检查都有什么| 十一月份出生的是什么星座| 海螺不能和什么一起吃| 什么是刑事拘留| 菡字五行属什么| 失眠吃什么中药调理效果快| 铁蛋白低是什么原因| 食物中毒吃什么解毒最快| 龋牙是什么意思| 10.1什么星座| 发冷是什么原因| 5月份是什么星座| 什么动物睡觉不闭眼睛| 莲子吃了有什么好处| 老是吐口水是什么原因| k3是什么| 你在说什么用英语怎么说| 啊囊死给什么意思| 美纹纸是干什么用的| 丹参的功效与作用是什么| 出现的反义词是什么| 清真食品是什么意思| bambi什么意思| 缺血吃什么补血最快| 什么是cg| 仁字五行属什么| 九五年属什么| 彩云之南是什么意思| 未时是什么时辰| 淋巴细胞绝对值偏低说明什么| 6.8是什么星座| 什么是盆腔积液| 十月份出生的是什么星座| 排卵期是什么时候开始算| 舒五行属性是什么| 属虎是什么命| 微博id是什么| 月经一直不干净是什么原因| 小麦是什么粮食| ch表示什么意思| 取鱼刺挂什么科室| 蛇酒不是三十九开什么| 八月十五是什么星座| 腰椎间盘突吃什么药| 手淫过多会导致什么| 农历六月十三是什么星座| 虚火旺吃什么去火最快| 身心健康是什么意思| 早射吃什么药最好| 什么食物维生素b含量高| 红曲是什么| 知鸟是什么| 四眼狗有什么迷信说法| ln是什么| 四不像长什么样| 血沉高说明什么问题| 什么是负离子| 今天生猪什么价| 什么水果含硒量最高| 什么酒好喝| 中央委员什么级别| 两鬓斑白是什么意思| 神阙穴在什么位置| 为什么会有胎记| 咳嗽黄痰是什么原因| 殉葬是什么意思| 怀孕失眠是什么原因| 百香果有什么好处功效| 1991年属羊是什么命| 海棠果什么时候成熟| 阴阳二气是什么意思| 西施长什么样| 什么眼型最好看| iris是什么意思啊| 熬夜喝什么汤比较好| 1974年是什么命| 什么叫稽留流产| cross是什么牌子| 喝酒吃头孢有什么反应| 百香果什么时候开花结果| 痛心疾首的疾是什么意思| 什么是植物| 维生素c阳性是什么意思| 相什么并什么| 十二指肠溃疡a1期什么意思| 3.21什么星座| 献血后吃什么| 耍朋友是什么意思| 蛋白烫发是什么意思| 喉结不明显的男生是什么原因| 如火如荼是什么意思| rush是什么| 娥皇女英是什么意思| 党委委员是什么级别| 什么是射频消融术| 诟病是什么意思| 心热是什么原因造成的| 吊销驾驶证是什么意思| 结石用什么药| 陶渊明是什么先生| 作茧自缚是什么意思| 煞南是什么意思| 衣原体支原体感染有什么症状| 女性尿浑浊是什么原因| 蜜蜂的尾巴有什么作用| 脾虚吃什么好的最快| 柠檬酸是什么| 低血压平时要注意什么| 待产是什么意思| 为什么要长征| 带黄金对身体有什么好处| 凉烟都有什么牌子| suan是什么意思| 胸部b超挂什么科| 嘴巴周围长痘痘是什么原因引起的| 雷暴是什么意思| 三朵花代表什么意思| 未见血流信号是什么意思| 激光脱毛有什么副作用| 包粽子的叶子叫什么| 龙脉是什么意思| 爱迪生发明什么| 胆碱酯酶低是什么原因| 吃什么凉血效果最好| 霉菌性阴道炎用什么药好得快| 馐什么意思| 月经准时来说明什么| 为什么会得毛囊炎| 中元节是什么意思| 梦见流鼻血是什么征兆| 长期熬夜吃什么可以补回来| 霰粒肿用什么药| 阴道炎用什么洗液| 精油有什么作用| 大公鸡是什么牌子| 肝内多发钙化灶是什么意思| 百度Jump to content

摘掉“线上黄牛”加速包

From Wikipedia, the free encyclopedia
百度 肋骨外翻挂什么科

Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major motivating factor for the development of computer science.

Logical foundations

[edit]

While the roots of formalized logic go back to Aristotle, the end of the 19th and early 20th centuries saw the development of modern logic and formalized mathematics. Frege's Begriffsschrift (1879) introduced both a complete propositional calculus and what is essentially modern predicate logic.[1] His Foundations of Arithmetic, published in 1884,[2] expressed (parts of) mathematics in formal logic. This approach was continued by Russell and Whitehead in their influential Principia Mathematica, first published 1910–1913,[3] and with a revised second edition in 1927.[4] Russell and Whitehead thought they could derive all mathematical truth using axioms and inference rules of formal logic, in principle opening up the process to automation. In 1920, Thoralf Skolem simplified a previous result by Leopold L?wenheim, leading to the L?wenheim–Skolem theorem and, in 1930, to the notion of a Herbrand universe and a Herbrand interpretation that allowed (un)satisfiability of first-order formulas (and hence the validity of a theorem) to be reduced to (potentially infinitely many) propositional satisfiability problems.[5]

In 1929, Moj?esz Presburger showed that the first-order theory of the natural numbers with addition and equality (now called Presburger arithmetic in his honor) is decidable and gave an algorithm that could determine if a given sentence in the language was true or false.[6][7]

However, shortly after this positive result, Kurt G?del published On Formally Undecidable Propositions of Principia Mathematica and Related Systems (1931), showing that in any sufficiently strong axiomatic system, there are true statements that cannot be proved in the system. This topic was further developed in the 1930s by Alonzo Church and Alan Turing, who on the one hand gave two independent but equivalent definitions of computability, and on the other gave concrete examples of undecidable questions.

First implementations

[edit]

In 1954, Martin Davis programmed Presburger's algorithm for a JOHNNIAC vacuum-tube computer at the Institute for Advanced Study in Princeton, New Jersey. According to Davis, "Its great triumph was to prove that the sum of two even numbers is even".[7][8] More ambitious was the Logic Theorist in 1956, a deduction system for the propositional logic of the Principia Mathematica, developed by Allen Newell, Herbert A. Simon and J. C. Shaw. Also running on a JOHNNIAC, the Logic Theorist constructed proofs from a small set of propositional axioms and three deduction rules: modus ponens, (propositional) variable substitution, and the replacement of formulas by their definition. The system used heuristic guidance, and managed to prove 38 of the first 52 theorems of the Principia.[7]

The "heuristic" approach of the Logic Theorist tried to emulate human mathematicians, and could not guarantee that a proof could be found for every valid theorem even in principle. In contrast, other, more systematic algorithms achieved, at least theoretically, completeness for first-order logic. Initial approaches relied on the results of Herbrand and Skolem to convert a first-order formula into successively larger sets of propositional formulae by instantiating variables with terms from the Herbrand universe. The propositional formulas could then be checked for unsatisfiability using a number of methods. Gilmore's program used conversion to disjunctive normal form, a form in which the satisfiability of a formula is obvious.[7][9]

Decidability of the problem

[edit]

Depending on the underlying logic, the problem of deciding the validity of a formula varies from trivial to impossible. For the common case of propositional logic, the problem is decidable but co-NP-complete, and hence only exponential-time algorithms are believed to exist for general proof tasks. For a first-order predicate calculus, G?del's completeness theorem states that the theorems (provable statements) are exactly the semantically valid well-formed formulas, so the valid formulas are computably enumerable: given unbounded resources, any valid formula can eventually be proven. However, invalid formulas (those that are not entailed by a given theory), cannot always be recognized.

The above applies to first-order theories, such as Peano arithmetic. However, for a specific model that may be described by a first-order theory, some statements may be true but undecidable in the theory used to describe the model. For example, by G?del's incompleteness theorem, we know that any consistent theory whose axioms are true for the natural numbers cannot prove all first-order statements true for the natural numbers, even if the list of axioms is allowed to be infinite enumerable. It follows that an automated theorem prover will fail to terminate while searching for a proof precisely when the statement being investigated is undecidable in the theory being used, even if it is true in the model of interest. Despite this theoretical limit, in practice, theorem provers can solve many hard problems, even in models that are not fully described by any first-order theory (such as the integers).

[edit]

A simpler, but related, problem is proof verification, where an existing proof for a theorem is certified valid. For this, it is generally required that each individual proof step can be verified by a primitive recursive function or program, and hence the problem is always decidable.

Since the proofs generated by automated theorem provers are typically very large, the problem of proof compression is crucial, and various techniques aiming at making the prover's output smaller, and consequently more easily understandable and checkable, have been developed.

Proof assistants require a human user to give hints to the system. Depending on the degree of automation, the prover can essentially be reduced to a proof checker, with the user providing the proof in a formal way, or significant proof tasks can be performed automatically. Interactive provers are used for a variety of tasks, but even fully automatic systems have proved a number of interesting and hard theorems, including at least one that has eluded human mathematicians for a long time, namely the Robbins conjecture.[10][11] However, these successes are sporadic, and work on hard problems usually requires a proficient user.

Another distinction is sometimes drawn between theorem proving and other techniques, where a process is considered to be theorem proving if it consists of a traditional proof, starting with axioms and producing new inference steps using rules of inference. Other techniques would include model checking, which, in the simplest case, involves brute-force enumeration of many possible states (although the actual implementation of model checkers requires much cleverness, and does not simply reduce to brute force).

There are hybrid theorem proving systems that use model checking as an inference rule. There are also programs that were written to prove a particular theorem, with a (usually informal) proof that if the program finishes with a certain result, then the theorem is true. A good example of this was the machine-aided proof of the four color theorem, which was very controversial as the first claimed mathematical proof that was essentially impossible to verify by humans due to the enormous size of the program's calculation (such proofs are called non-surveyable proofs). Another example of a program-assisted proof is the one that shows that the game of Connect Four can always be won by the first player.

Applications

[edit]

Commercial use of automated theorem proving is mostly concentrated in integrated circuit design and verification. Since the Pentium FDIV bug, the complicated floating point units of modern microprocessors have been designed with extra scrutiny. AMD, Intel and others use automated theorem proving to verify that division and other operations are correctly implemented in their processors.[12]

Other uses of theorem provers include program synthesis, constructing programs that satisfy a formal specification.[13] Automated theorem provers have been integrated with proof assistants, including Isabelle/HOL.[14]

Applications of theorem provers are also found in natural language processing and formal semantics, where they are used to analyze discourse representations.[15][16]

First-order theorem proving

[edit]

In the late 1960s agencies funding research in automated deduction began to emphasize the need for practical applications.[citation needed] One of the first fruitful areas was that of program verification whereby first-order theorem provers were applied to the problem of verifying the correctness of computer programs in languages such as Pascal, Ada, etc. Notable among early program verification systems was the Stanford Pascal Verifier developed by David Luckham at Stanford University.[17][18][19] This was based on the Stanford Resolution Prover also developed at Stanford using John Alan Robinson's resolution principle. This was the first automated deduction system to demonstrate an ability to solve mathematical problems that were announced in the Notices of the American Mathematical Society before solutions were formally published.[citation needed]

First-order theorem proving is one of the most mature subfields of automated theorem proving. The logic is expressive enough to allow the specification of arbitrary problems, often in a reasonably natural and intuitive way. On the other hand, it is still semi-decidable, and a number of sound and complete calculi have been developed, enabling fully automated systems.[20] More expressive logics, such as higher-order logics, allow the convenient expression of a wider range of problems than first-order logic, but theorem proving for these logics is less well developed.[21][22]

Relationship with SMT

[edit]

There is substantial overlap between first-order automated theorem provers and SMT solvers. Generally, automated theorem provers focus on supporting full first-order logic with quantifiers, whereas SMT solvers focus more on supporting various theories (interpreted predicate symbols). ATPs excel at problems with lots of quantifiers, whereas SMT solvers do well on large problems without quantifiers.[23] The line is blurry enough that some ATPs participate in SMT-COMP, while some SMT solvers participate in CASC.[24]

Benchmarks, competitions, and sources

[edit]

The quality of implemented systems has benefited from the existence of a large library of standard benchmark examples—the Thousands of Problems for Theorem Provers (TPTP) Problem Library[25]—as well as from the CADE ATP System Competition (CASC), a yearly competition of first-order systems for many important classes of first-order problems.

Some important systems (all have won at least one CASC competition division) are listed below.

The Theorem Prover Museum[27] is an initiative to conserve the sources of theorem prover systems for future analysis, since they are important cultural/scientific artefacts. It has the sources of many of the systems mentioned above.

[edit]

Software systems

[edit]
Comparison
Name License type Web service Library Standalone Last update (YYYY-mm-dd format)
ACL2 3-clause BSD No No Yes May 2019
Prover9/Otter Public Domain Via System on TPTP Yes No 2009
Jape GPLv2 Yes Yes No May 15, 2015
PVS GPLv2 No Yes No January 14, 2013
EQP ? No Yes No May 2009
PhoX ? No Yes No September 28, 2017
E GPL Via System on TPTP No Yes July 4, 2017
SNARK Mozilla Public License 1.1 No Yes No 2012
Vampire Vampire License Via System on TPTP Yes Yes December 14, 2017
Theorem Proving System (TPS) TPS Distribution Agreement No Yes No February 4, 2012
SPASS FreeBSD license Yes Yes Yes November 2005
IsaPlanner GPL No Yes Yes 2007
KeY GPL Yes Yes Yes October 11, 2017
Z3 Theorem Prover MIT License Yes Yes Yes November 19, 2019

Free software

[edit]

Proprietary software

[edit]

See also

[edit]

Notes

[edit]
  1. ^ Frege, Gottlob (1879). Begriffsschrift. Verlag Louis Neuert.
  2. ^ Frege, Gottlob (1884). Die Grundlagen der Arithmetik (PDF). Breslau: Wilhelm Kobner. Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06.
  3. ^ Russell, Bertrand; Whitehead, Alfred North (1910–1913). Principia Mathematica (1st ed.). Cambridge University Press.
  4. ^ Russell, Bertrand; Whitehead, Alfred North (1927). Principia Mathematica (2nd ed.). Cambridge University Press.
  5. ^ Herbrand, J. (1930). Recherches sur la théorie de la démonstration (PhD) (in French). University of Paris.
  6. ^ Presburger, Moj?esz (1929). "über die Vollst?ndigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt". Comptes Rendus du I Congrès de Mathématiciens des Pays Slaves. Warszawa: 92–101.
  7. ^ a b c d Davis, Martin (2001). "The Early History of Automated Deduction". Robinson & Voronkov 2001. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  8. ^ Bibel, Wolfgang (2007). "Early History and Perspectives of Automated Deduction" (PDF). Ki 2007. LNAI (4667). Springer: 2–18. Archived (PDF) from the original on 2025-08-06. Retrieved 2 September 2012.
  9. ^ Gilmore, Paul (1960). "A proof procedure for quantification theory: its justification and realisation". IBM Journal of Research and Development. 4: 28–35. doi:10.1147/rd.41.0028.
  10. ^ McCune, W. W. (1997). "Solution of the Robbins Problem". Journal of Automated Reasoning. 19 (3): 263–276. doi:10.1023/A:1005843212881. S2CID 30847540.
  11. ^ Kolata, Gina (December 10, 1996). "Computer Math Proof Shows Reasoning Power". The New York Times. Retrieved 2025-08-06.
  12. ^ Goel, Shilpi; Ray, Sandip (2022), Chattopadhyay, Anupam (ed.), "Microprocessor Assurance and the Role of Theorem Proving", Handbook of Computer Architecture, Singapore: Springer Nature Singapore, pp. 1–43, doi:10.1007/978-981-15-6401-7_38-1, ISBN 978-981-15-6401-7, retrieved 2025-08-06
  13. ^ Basin, D.; Deville, Y.; Flener, P.; Hamfelt, A.; Fischer Nilsson, J. (2004). "Synthesis of programs in computational logic". In M. Bruynooghe and K.-K. Lau (ed.). Program Development in Computational Logic. LNCS. Vol. 3049. Springer. pp. 30–65. CiteSeerX 10.1.1.62.4976.
  14. ^ Meng, Jia; Paulson, Lawrence C. (2025-08-06). "Translating Higher-Order Clauses to First-Order Clauses". Journal of Automated Reasoning. 40 (1): 35–60. doi:10.1007/s10817-007-9085-y. ISSN 1573-0670. S2CID 7716709.
  15. ^ Bos, Johan. "Wide-coverage semantic analysis with boxer." Semantics in text processing. step 2008 conference proceedings. 2008.
  16. ^ Muskens, Reinhard. "Combining Montague semantics and discourse representation." Linguistics and philosophy (1996): 143-186.
  17. ^ Luckham, David C.; Suzuki, Norihisa (Mar 1976). Automatic Program Verification V: Verification-Oriented Proof Rules for Arrays, Records, and Pointers (Technical Report AD-A027 455). Defense Technical Information Center. Archived from the original on August 12, 2021.
  18. ^ Luckham, David C.; Suzuki, Norihisa (Oct 1979). "Verification of Array, Record, and Pointer Operations in Pascal". ACM Transactions on Programming Languages and Systems. 1 (2): 226–244. doi:10.1145/357073.357078. S2CID 10088183.
  19. ^ Luckham, D.; German, S.; von Henke, F.; Karp, R.; Milne, P.; Oppen, D.; Polak, W.; Scherlis, W. (1979). Stanford Pascal verifier user manual (Technical report). Stanford University. CS-TR-79-731.
  20. ^ Loveland, D. W. (1986). "Automated theorem proving: Mapping logic into AI". Proceedings of the ACM SIGART international symposium on Methodologies for intelligent systems. Knoxville, Tennessee, United States: ACM Press. p. 224. doi:10.1145/12808.12833. ISBN 978-0-89791-206-8. S2CID 14361631.
  21. ^ Kerber, Manfred. "How to prove higher order theorems in first order logic." (1999).
  22. ^ Benzmüller, Christoph, et al. "LEO-II-a cooperative automatic theorem prover for classical higher-order logic (system description)." International Joint Conference on Automated Reasoning. Berlin, Germany and Heidelberg: Springer, 2008.
  23. ^ Blanchette, Jasmin Christian; B?hme, Sascha; Paulson, Lawrence C. (2025-08-06). "Extending Sledgehammer with SMT Solvers". Journal of Automated Reasoning. 51 (1): 109–128. doi:10.1007/s10817-013-9278-5. ISSN 1573-0670. S2CID 5389933. ATPs and SMT solvers have complementary strengths. The former handle quantifiers more elegantly, whereas the latter excel on large, mostly ground problems.
  24. ^ Weber, Tjark; Conchon, Sylvain; Déharbe, David; Heizmann, Matthias; Niemetz, Aina; Reger, Giles (2025-08-06). "The SMT Competition 2015–2018". Journal on Satisfiability, Boolean Modeling and Computation. 11 (1): 221–259. doi:10.3233/SAT190123. In recent years, we have seen a blurring of lines between SMT-COMP and CASC with SMT solvers competing in CASC and ATPs competing in SMT-COMP.
  25. ^ Sutcliffe, Geoff. "The TPTP Problem Library for Automated Theorem Proving". Retrieved 15 July 2019.
  26. ^ "History". vprover.github.io.
  27. ^ "The Theorem Prover Museum". Michael Kohlhase. Retrieved 2025-08-06.
  28. ^ Bundy, Alan (1999). The automation of proof by mathematical induction (PDF) (Technical report). Informatics Research Report. Vol. 2. Division of Informatics, University of Edinburgh. hdl:1842/3394.
  29. ^ Gabbay, Dov M., and Hans Jürgen Ohlbach. "Quantifier elimination in second-order predicate logic." (1992).

References

[edit]
[edit]
舌吻是什么 抄送和密送是什么意思 临幸是什么意思 百分位是什么意思 煮粥用什么锅最好
没主见是什么意思 经常做噩梦是什么原因 维生素c弱阳性是什么意思 下九流指的是什么 人发胖的原因是什么引起的
地软有什么功效和作用 大运流年是什么意思 一个月没有来月经是什么原因 club monaco是什么牌子 醉酒当歌什么意思
卵巢早衰吃什么可以补回来 老人双脚浮肿是什么原因 日不落是什么意思 2013年是什么命 阿甘正传珍妮得了什么病
惺惺相惜什么意思jinxinzhichuang.com 妇科检查清洁度3度什么意思hcv7jop5ns1r.cn 小暑是什么时候hcv8jop2ns1r.cn 人妖是什么hcv8jop9ns9r.cn 什么工作最赚钱hcv9jop4ns0r.cn
盆腔炎是什么引起的ff14chat.com 7月10号是什么星座hcv8jop6ns8r.cn 学生是什么阶级hanqikai.com 麻醉学学什么hcv8jop3ns7r.cn 什么叫老人临终骨折hcv9jop5ns7r.cn
鬼子来了为什么被禁cj623037.com 女人梦到蛇是什么意思hcv8jop0ns6r.cn 生辰八字是指什么ff14chat.com 什么是白血病hcv7jop6ns2r.cn 什么的叮咛hcv9jop8ns3r.cn
腿疼是什么原因引起的hcv8jop3ns1r.cn generic是什么意思hcv7jop6ns4r.cn 大便黑绿色是什么原因hcv7jop7ns0r.cn 长期喝饮料对身体有什么危害hcv8jop5ns0r.cn 口臭严重是什么原因hcv8jop3ns7r.cn
百度