97年属什么的生肖| 狗皮肤溃烂用什么药| 大便潜血弱阳性是什么原因| 抗甲状腺球蛋白抗体高是什么意思| 作是什么意思| 比熊吃什么牌子的狗粮好| 甲状腺结节是什么引起的| 空集是什么意思| 宫内孕和宫外孕有什么区别| 胃幽门螺旋杆菌吃什么药效果好| 为什么插几下就射了| 俗气是什么意思| 被螨虫咬了擦什么药膏| 仁义道德是什么意思| 什么网名| 子宫内膜厚有什么症状| 生酮是什么意思| 尿蛋白质阳性什么意思| 5月26日什么星座| 阴唇肿是什么原因| 冬至有什么忌讳| 对口升学什么意思| 兴渠是什么菜| 吃止疼药有什么副作用| 促甲状腺激素偏高有什么症状| 丝苗米是什么米| 为什么头发总是很油| 保姆是什么意思| 是什么字| 粉刺长什么样图片| 人体最长的骨头是什么| manu是什么意思| 颈管细胞有是什么意思| 兰若是什么意思| aq什么意思| 特警力量第二部叫什么| 造口是什么意思| 宫颈欠光滑是什么意思| 据说是什么意思| 气管炎吃什么好| 怎么查自己五行缺什么| 平头哥是什么意思| 起酥油是什么| 破伤风是什么| 手脚浮肿是什么原因| 颈椎引起的头晕是什么症状| 脂蛋白a高吃什么药| 什么是荨麻疹| 儿童测骨龄挂什么科| 飞机后面的白烟是什么| 可刀是什么意思| 空鼻症是什么症状| 金风玉露是什么意思| 宫颈钙化灶是什么意思| 甲醛中毒什么症状| 蜻蜓点水是什么行为| 吃南瓜有什么好处| 下雨天适合吃什么| 咖啡拿铁是什么意思| 熬夜吃什么| 女人喝什么补气养血| 九月初八是什么星座| 科普一下是什么意思| 什么是白肺| 皮肤擦伤用什么药最好| 逐是什么意思| 婴儿什么时候可以睡枕头| 缺钾最忌讳吃什么| 暮光是什么意思| 护理部是干什么的| 肠粉为什么叫肠粉| 空泡蝶鞍是什么病| 梨什么时候成熟| 品牌pr是什么意思| 大步向前走永远不回头是什么歌| 什么老什么老| 姗字五行属什么| 鲜字五行属什么| 直立倾斜试验阳性是什么病| 胃窦糜烂是什么意思| 2pcs是什么意思| 解落三秋叶的解是什么意思| 梦见铲雪预示着什么| 汐字五行属什么| 交接是什么意思| 桑葚搭配什么泡水喝最好| 国家穷为什么不多印钱| 日抛什么意思| c02是什么意思| 什么去火效果最好| 很长很长的什么填空| 真太阳时是什么意思| 生孩子需要准备什么东西| 两胸之间是什么部位| 撮鸟是什么意思| 什么是白平衡| 唐僧叫什么名字| 一什么清风| 五一年属什么生肖| 益生菌什么牌子好| 防晒衣什么面料好| 余情未了什么意思| 光阴荏苒是什么意思| chest是什么意思| 脑梗什么原因导致的| 十二月二十号是什么星座| 慢性胃炎有什么症状| 7月10日是什么星座| 什么是地中海贫血| 口腔溃疡该挂什么科| 疏通血管吃什么药| 11月8日是什么星座| 沅字五行属什么| 女生流白带意味着什么| 什么工作挣钱多| 人次什么意思| 尿频挂什么科| 朱砂红是什么颜色| 嚭是什么意思| 96195是什么电话| 舌头干燥是什么原因| 英语四级什么时候报名| 我行我素的人什么性格| 耳朵一直痒是什么原因| 语无伦次是什么意思| 眼晴干涩模糊用什么药| 肝钙化灶什么意思| 什么是软组织损伤| 补肾壮阳吃什么药好| 九月三日是什么日子| 92年是什么年| 耳毛念什么| 菖蒲是什么| 康庄大道是什么意思| 吃汤圆是什么节日| 六月份生日是什么星座| 正常龟头是什么颜色| 免职是什么意思| 腿麻木是什么原因引起的| 范字五行属什么| 吃什么抑制食欲| 蛋白低是什么原因| 头发出汗多是什么原因| 什么的白桦| pu是什么元素| 女人梦到小蛇什么预兆| 五指毛桃有什么功效| 胃不舒服吃什么水果| 大队书记是什么级别| 2.16什么星座| 1月20日什么星座| 赵云的武器叫什么| 三手烟是什么| 做完雾化为什么要漱口| art是什么| 妲己是什么生肖| bopv是什么疫苗| 女人脾肾两虚吃什么好| 手指肚发红是什么原因| 胆的作用及功能是什么| 东南角风水代表什么| 无量寿佛是什么意思| 右胳膊上长痣代表什么| 橙色代表什么| 痘痘里面挤出来的白色东西是什么| 摩羯座后面是什么星座| ck是什么品牌| 做肝功能检查挂什么科| 虾米是什么意思| 免疫球蛋白适合什么人| 茶麸是什么东西| 栀子对妇科有什么功效| 右手手背有痣代表什么| 肝火旺是什么原因引起的| pm是什么单位| 凝血常规是查什么的| hca是什么意思| 处暑的含义是什么意思| 质问是什么意思啊| 四月十五是什么星座| 左手麻木什么原因| a型rhd阳性是什么意思| 中耳炎用什么药最好| 1990属马佩戴什么最佳| 旦角是什么意思| 站着说话不腰疼什么意思| 眉毛附近长痘痘是什么原因| 什么鞋穿着舒服| 健胃消食片什么时候吃| 孕妇为什么不能吃韭菜| 母亲节送母亲什么礼物| 活塞是什么| 又吐又拉是什么原因| 女命七杀代表什么| 小孩什么时候换牙| wifi用户名是什么| 寒咳吃什么药| 胸痹是什么意思| cpu什么意思| 去香港澳门旅游需要准备什么| 什么的蚂蚁| 红什么| 1月14日什么星座| 猪油吃多了有什么好处和坏处| 白膜是什么东西| 海蛎子是什么| 身体什么| 为什么会长胎记| 98年是什么年| 睡着后抽搐抖动是什么| 什么是部首| 什么人容易得布病| 人中长痘痘什么原因| 肺部检查应该挂什么科| 二婚结婚需要什么证件| 女性内分泌失调有什么症状| 静电是什么| 欢喜冤家是什么意思| 血糖高有什么危害| 孕妇地中海贫血对胎儿有什么影响| 春天什么花开| 湿毒吃什么药最有效| 高什么亮什么| 什么牌子的大米好吃| 什么是抽动症| 小孩小便红色是什么原因| 鱼油功效和作用是什么| 支气管炎是什么原因引起的| 月经什么颜色的血是正常的| 发烧为什么不能吃鸡蛋| 吃什么补性功能最快| 脖子为什么会痒| 宝宝吃什么奶粉好| 肛门痒是什么原因男性| 土耳其是什么民族| 洗涤心灵是什么意思| 急性肠胃炎打什么点滴| 炸酱面用什么酱| 结巴是什么原因引起的| 舌苔紫色是什么原因| 宝宝发烧是什么原因引起的| 嗓子疼喝什么茶最有效| 送什么礼品好| pwp是什么意思| hiv1是什么意思| 一柱擎天什么意思| 怀孕第一个月有什么症状| style什么意思| 阁老相当于现在什么官| 做梦梦到怀孕了是什么意思| 转氨酶高是什么病| 人工流产后可以吃什么| 公积金缴存基数是什么| 罗宾尼手表什么档次| 脸上长痣是什么原因造成的| 拔完牙后能吃什么| vlone是什么牌子| 存款准备金率是什么意思| 为什么会感染hpv| 低碳生活是什么意思| 人皇是什么意思| 肠梗阻是什么| 蜂蜜吃有什么好处| 嘴唇发干是什么原因| 百度Jump to content

国家信访局公开曝光五起信访事项督查问责案例

From Wikipedia, the free encyclopedia
百度 针对此次抽检问题,新京报记者自2月24日起多次致电美丹食品,但均无人接听。

In mathematics, a surjective function (also known as surjection, or onto function /??n.tu?/) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : XY, the codomain Y is the image of the function's domain X.[1][2] It is not required that x be unique; the function f may map one or more elements of X to the same element of Y.

The term surjective and the related terms injective and bijective were introduced by Nicolas Bourbaki,[3][4] a group of mainly French 20th-century mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word sur means over or above, and relates to the fact that the image of the domain of a surjective function completely covers the function's codomain.

Any function induces a surjection by restricting its codomain to the image of its domain. Every surjective function has a right inverse assuming the axiom of choice, and every function with a right inverse is necessarily a surjection. The composition of surjective functions is always surjective. Any function can be decomposed into a surjection and an injection.

Definition

[edit]

A surjective function is a function whose image is equal to its codomain. Equivalently, a function with domain and codomain is surjective if for every in there exists at least one in with .[1] Surjections are sometimes denoted by a two-headed rightwards arrow (U+21A0 ? RIGHTWARDS TWO HEADED ARROW),[5] as in .

Symbolically,

If , then is said to be surjective if
.[2][6]

Examples

[edit]
A non-surjective function from domain X to codomain Y. The smaller yellow oval inside Y is the image (also called range) of f. This function is not surjective, because the image does not fill the whole codomain. In other words, Y is colored in a two-step process: First, for every x in X, the point f(x) is colored yellow; Second, all the rest of the points in Y, that are not yellow, are colored blue. The function f would be surjective only if there were no blue points.
  • For any set X, the identity function idX on X is surjective.
  • The function f : Z → {0, 1} defined by f(n) = n mod 2 (that is, even integers are mapped to 0 and odd integers to 1) is surjective.
  • The function f : RR defined by f(x) = 2x + 1 is surjective (and even bijective), because for every real number y, we have an x such that f(x) = y: such an appropriate x is (y ? 1)/2.
  • The function f : RR defined by f(x) = x3 ? 3x is surjective, because the pre-image of any real number y is the solution set of the cubic polynomial equation x3 ? 3x ? y = 0, and every cubic polynomial with real coefficients has at least one real root. However, this function is not injective (and hence not bijective), since, for example, the pre-image of y = 2 is {x = ?1, x = 2}. (In fact, the pre-image of this function for every y, ?2 ≤ y ≤ 2 has more than one element.)
  • The function g : RR defined by g(x) = x2 is not surjective, since there is no real number x such that x2 = ?1. However, the function g : RR≥0 defined by g(x) = x2 (with the restricted codomain) is surjective, since for every y in the nonnegative real codomain Y, there is at least one x in the real domain X such that x2 = y.
  • The natural logarithm function ln : (0, +∞) → R is a surjective and even bijective (mapping from the set of positive real numbers to the set of all real numbers). Its inverse, the exponential function, if defined with the set of real numbers as the domain and the codomain, is not surjective (as its range is the set of positive real numbers).
  • The matrix exponential is not surjective when seen as a map from the space of all n×n matrices to itself. It is, however, usually defined as a map from the space of all n×n matrices to the general linear group of degree n (that is, the group of all n×n invertible matrices). Under this definition, the matrix exponential is surjective for complex matrices, although still not surjective for real matrices.
  • The projection from a cartesian product A × B to one of its factors is surjective, unless the other factor is empty.
  • In a 3D video game, vectors are projected onto a 2D flat screen by means of a surjective function.

Properties

[edit]

A function is bijective if and only if it is both surjective and injective.

If (as is often done) a function is identified with its graph, then surjectivity is not a property of the function itself, but rather a property of the mapping.[7] This is, the function together with its codomain. Unlike injectivity, surjectivity cannot be read off of the graph of the function alone.

Surjections as right invertible functions

[edit]

The function g : YX is said to be a right inverse of the function f : XY if f(g(y)) = y for every y in Y (g can be undone by f). In other words, g is a right inverse of f if the composition f o g of g and f in that order is the identity function on the domain Y of g. The function g need not be a complete inverse of f because the composition in the other order, g o f, may not be the identity function on the domain X of f. In other words, f can undo or "reverse" g, but cannot necessarily be reversed by it.

Every function with a right inverse is necessarily a surjection. The proposition that every surjective function has a right inverse is equivalent to the axiom of choice.

If f : XY is surjective and B is a subset of Y, then f(f ?1(B)) = B. Thus, B can be recovered from its preimage f ?1(B).

For example, in the first illustration in the gallery, there is some function g such that g(C) = 4. There is also some function f such that f(4) = C. It doesn't matter that g is not unique (it would also work if g(C) equals 3); it only matters that f "reverses" g.

Surjections as epimorphisms

[edit]

A function f : XY is surjective if and only if it is right-cancellative:[8][9] given any functions g,h : YZ, whenever g o f = h o f, then g = h. This property is formulated in terms of functions and their composition and can be generalized to the more general notion of the morphisms of a category and their composition. Right-cancellative morphisms are called epimorphisms. Specifically, surjective functions are precisely the epimorphisms in the category of sets. The prefix epi is derived from the Greek preposition ?π? meaning over, above, on.

Any morphism with a right inverse is an epimorphism, but the converse is not true in general. A right inverse g of a morphism f is called a section of f. A morphism with a right inverse is called a split epimorphism.

Surjections as binary relations

[edit]

Any function with domain X and codomain Y can be seen as a left-total and right-unique binary relation between X and Y by identifying it with its function graph. A surjective function with domain X and codomain Y is then a binary relation between X and Y that is right-unique and both left-total and right-total.

Cardinality of the domain of a surjection

[edit]

The cardinality of the domain of a surjective function is greater than or equal to the cardinality of its codomain: If f : XY is a surjective function, then X has at least as many elements as Y, in the sense of cardinal numbers. (The proof appeals to the axiom of choice to show that a function g : YX satisfying f(g(y)) = y for all y in Y exists. g is easily seen to be injective, thus the formal definition of |Y| ≤ |X| is satisfied.)

Specifically, if both X and Y are finite with the same number of elements, then f : XY is surjective if and only if f is injective.

Composition and decomposition

[edit]

The composition of surjective functions is always surjective: If f and g are both surjective, and the codomain of g is equal to the domain of f, then f o g is surjective. Conversely, if f o g is surjective, then f is surjective (but g, the function applied first, need not be). These properties generalize from surjections in the category of sets to any epimorphisms in any category.

Any function can be decomposed into a surjection and an injection: For any function h : XZ there exist a surjection f : XY and an injection g : YZ such that h = g o f. To see this, define Y to be the set of preimages h?1(z) where z is in h(X). These preimages are disjoint and partition X. Then f carries each x to the element of Y which contains it, and g carries each element of Y to the point in Z to which h sends its points. Then f is surjective since it is a projection map, and g is injective by definition.

Induced surjection and induced bijection

[edit]

Any function induces a surjection by restricting its codomain to its range. Any surjective function induces a bijection defined on a quotient of its domain by collapsing all arguments mapping to a given fixed image. More precisely, every surjection f : AB can be factored as a projection followed by a bijection as follows. Let A/~ be the equivalence classes of A under the following equivalence relation: x ~ y if and only if f(x) = f(y). Equivalently, A/~ is the set of all preimages under f. Let P(~) : AA/~ be the projection map which sends each x in A to its equivalence class [x]~, and let fP : A/~ → B be the well-defined function given by fP([x]~) = f(x). Then f = fP o P(~).

The set of surjections

[edit]

Given fixed finite sets A and B, one can form the set of surjections A ? B. The cardinality of this set is one of the twelve aspects of Rota's Twelvefold way, and is given by , where denotes a Stirling number of the second kind.

[edit]

See also

[edit]

References

[edit]
  1. ^ a b "Injective, Surjective and Bijective". www.mathsisfun.com. Retrieved 2025-08-05.
  2. ^ a b "Bijection, Injection, And Surjection | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2025-08-05.
  3. ^ Miller, Jeff, "Injection, Surjection and Bijection", Earliest Uses of Some of the Words of Mathematics, Tripod.
  4. ^ Mashaal, Maurice (2006). Bourbaki. American Mathematical Soc. p. 106. ISBN 978-0-8218-3967-6.
  5. ^ "Arrows – Unicode" (PDF). Retrieved 2025-08-05.
  6. ^ Farlow, S. J. "Injections, Surjections, and Bijections" (PDF). math.umaine.edu. Retrieved 2025-08-05.
  7. ^ T. M. Apostol (1981). Mathematical Analysis. Addison-Wesley. p. 35.
  8. ^ Goldblatt, Robert (2006) [1984]. Topoi, the Categorial Analysis of Logic (Revised ed.). Dover Publications. ISBN 978-0-486-45026-1. Retrieved 2025-08-05.
  9. ^ "Surjection iff Right Cancellable". ProofWiki. Retrieved 2025-08-05.

Further reading

[edit]
舌头痛吃什么药好得快 丸美属于什么档次 手容易出汗是什么原因 黄鳝不能和什么一起吃 长白头发是什么原因
孕妇做无创是检查什么 单纯性肥胖是什么意思 少了一个肾有什么影响 请示是什么意思 3.22什么星座
什么方法可以降血压 葡萄胎是什么 功课是什么意思 女人吃桃子有什么好处和坏处 电动汽车什么牌子好
2020是什么年 病是什么结构的字 肝脏看什么科室 小孩缺锌吃什么补的快 什么动物
骨质增生是什么意思hcv9jop3ns3r.cn 米线用什么做的hcv8jop0ns3r.cn 不亚于是什么意思hcv9jop3ns9r.cn 男人是女人的什么hcv8jop5ns5r.cn 咳嗽流鼻涕吃什么药hcv8jop5ns0r.cn
英五行属什么hcv7jop5ns0r.cn 发烧反反复复是什么原因hcv8jop1ns2r.cn 松塔有什么用fenrenren.com 晚上吃什么好zsyouku.com 金牛座有什么特点hcv8jop1ns1r.cn
柝什么意思hcv9jop2ns5r.cn 孕妇地中海贫血对胎儿有什么影响hcv8jop2ns1r.cn 二级警监是什么级别hcv8jop8ns2r.cn 变白吃什么hcv9jop2ns1r.cn 乳腺结节什么症状表现hcv7jop9ns9r.cn
牙龈萎缩用什么牙膏hcv8jop7ns3r.cn 小宝贝是什么意思hcv8jop0ns4r.cn 反流性咽喉炎吃什么药hcv8jop7ns8r.cn 九月28号是什么星座hcv7jop4ns7r.cn 休克的本质是什么hcv8jop4ns5r.cn
百度