胆囊壁增厚是什么意思| 白羊座前面是什么星座| 裸妆是什么意思| 4月22日是什么星座| 狐臭是什么引起的| 电解质饮料有什么作用| 宝宝经常发烧是什么原因| 淋巴细胞比率低是什么意思| 立刀旁与什么有关| 寒湿吃什么中成药| 咳嗽喉咙痛吃什么药| 做梦梦到狮子是什么意思| betty是什么意思| 7月17号是什么星座| 月字旁的字有什么| a2是什么材质| 腹黑什么意思| 芬太尼是什么| 闻所未闻是什么意思| 经常玩手机有什么危害| 节节草有什么功效| 阴壁有许多颗粒是什么原因| qp是什么牌子| 乌鸡放什么炖补气补血| 心脏房颤是什么意思| 胸口疼痛什么原因| 心思重是什么意思| 鲱鱼是什么鱼| 脚老抽筋是什么原因| 什么是胰腺| dsa检查是什么| 9.15是什么星座| 5.5号是什么星座| 夏末是什么时候| mechrevo是什么牌子的电脑| bbr是什么牌子| 血浆是什么颜色| 五月二十三日是什么星座| 上火喝什么茶| 白头翁是什么生肖| edifice是什么牌子手表| 农历六月初三是什么星座| 头顶冒汗是什么原因| 宫腔镜是检查什么的| 虾虎鱼吃什么| 什么病会吐血| 扁桃体肥大有什么症状| 蹭饭吃是什么意思| 浩特是什么意思| 假小子是什么意思| 12月初是什么星座| 珠颈斑鸠吃什么| 什么的绿毯| 粉红色泡沫痰见于什么病| 1026什么星座| 支原体感染吃什么药好| 心脏是由什么组织构成的| 近亲为什么不能结婚| 服软是什么意思| 舌头有问题应该挂什么科| 手癣用什么药膏| 乳腺腺体是什么| qn是什么意思| 什么狗不如| 创伤性湿肺是什么意思| 胃粘膜糜烂吃什么药| 双侧卵巢多囊样改变是什么意思| 办理残疾证需要什么材料| 川崎病有什么症状| 排骨粥要搭配什么好吃| 坚果是什么| 珠光宝气是什么生肖| 宝宝缺钙吃什么补得快| 查hcg挂什么科| 狗狗拉稀是什么原因| 空调不制冷是什么原因| 半边屁股疼是什么原因| 什么东西止血最快最好| 麦冬长什么样| bench是什么牌子| 四月十四日是什么节日| 扶他是什么意思| 讨厌是什么意思| 龙头烤是什么鱼| 人体消化道中最长的器官是什么| 3月16号是什么星座| 鸡蛋加什么吃壮阳持久| 紫色是什么颜色| 包公是什么意思| 画画用什么铅笔| 什么馅的饺子好吃| 来大姨妈能吃什么水果| 三千年前是什么朝代| 鹿皮绒是什么面料| 牙周炎是什么症状| 镁偏高是什么原因| 蕈是什么意思| 身体铅超标有什么危害| 五行中什么生水| 洗牙有什么好处和坏处| 属牛的本命佛是什么佛| 阴历六月十八是什么日子| 电视黑屏是什么原因| 碳酸钠为什么显碱性| 天那水是什么| 工作单位是什么意思| 口腔义齿是什么| 贵圈是什么意思| 为什么会经常口腔溃疡| poem是什么意思| 鼻子干燥是什么原因| 肝囊肿有什么症状表现| 手心干燥是什么原因| 来大姨妈为什么会拉肚子| 肛周脓肿是什么原因引起的| 女人喝什么茶叶最好| 18岁属什么生肖| 鸽子拉水便是什么原因| 不是月经期出血是什么原因| 251什么意思| 阁字五行属什么| 外婆的妈妈叫什么| 单核细胞高是什么原因| 脑血栓不能吃什么水果| 胃在什么位置图片| mcm牌子属于什么档次| 唾液酸是什么| 买二手苹果手机要注意什么| 好强的女人是什么性格| gf是什么意思| upup是什么意思| 老公护着婆婆说明什么| 摆架子是什么意思| 心脏彩超可以检查什么| 更年期是什么| 坐小月子可以吃什么水果| 什么龙什么虎| 孕妇怕冷是什么原因| 被蜜蜂蛰了有什么好处| ok镜是什么| 技师是干什么的| 氯化钾是什么东西| 肠息肉是什么症状| 泡脚去湿气用什么泡最好| 血糖仪什么牌子好| 绿茶喝多了有什么危害| 犀牛吃什么食物| 头热是什么原因| 甲亢吃什么药最有效| 龙虎山是什么地貌| 为什么单位不愿意申请工伤| 张家界地貌属于什么地貌| 曼月乐是什么| 脚后跟疼是什么情况| 转述句是什么意思| 梦见自己被警察抓了是什么意思| 用淘米水洗脸有什么好处| 头上戴冠是什么生肖| 牙结石有什么危害| exp是什么意思| 吃什么能提高免疫力| 什么是包皮过长图片| 牙齿为什么会松动| 并发是什么意思| 牙龈是什么| 伊字五行属什么| 尿酸高可以吃什么肉| 梅子什么时候成熟| 处女座的幸运色是什么| 大便遇水就散什么原因| 阴沉木是什么木头| 男性肛门瘙痒用什么药| 头晕冒冷汗是什么原因| 黄精什么味道| 十月二十二什么星座| 孩子为什么厌学| 直肠腺瘤是什么| 胚由什么发育而来| 水肿吃什么消肿最快| 狗什么东西不能吃| 照是什么意思| 杵状指见于什么病| 肾疼是因为什么| 肠炎能吃什么水果| 太上皇是什么意思| 固精缩尿是什么意思| 十八大什么时候召开的| 一直干咳是什么原因| 手背发麻是什么原因| 没有什么就没有发言权| 惢是什么意思| 什么叫cd| 肝功能挂什么科| 小腹胀胀的是什么原因| 儿童内分泌科检查什么| 女人耳垂大厚代表什么| 农历9月17日是什么星座| 哥谭市是什么意思| 什么时候夏至| 什么的竹叶| 炖牛肉放什么佐料| 723是什么意思| 风寒感冒吃什么药| 吃什么油最健康排行榜| 女性尿路感染吃什么药好得快| 心包隐窝是什么意思| 梦见殡仪馆是什么意思| venus是什么星球| 淋巴结是什么东西| 一物降一物前面一句是什么| 心态好是什么意思| 晚上梦到蛇是什么意思| 什么是汛期| 什么时候冬天| 7月12日是什么日子| 什么野菜降血糖| 孛儿只斤现在姓什么| 吃酒是什么意思| 店小二是什么意思| 1961年属什么生肖| 马拉色菌毛囊炎用什么药治疗最好| 尿是什么味道| 女性胃火旺吃什么药| ala是什么氨基酸| 观音坐莲是什么姿势| 七星瓢虫吃什么| 青衣是什么意思| 王字旁一个行念什么| 工会经费是什么| 血小板比积偏高是什么意思| 水落石出开过什么生肖| 有机物是什么| 罗飞鱼是什么鱼| 流清水鼻涕吃什么药| 海参什么季节吃好| 送病人什么礼物好| 尿出来很黄是什么原因| 画龙点睛是什么生肖| 低血压吃什么药效果好| 沉香木是什么树| 什么是心率| 同房出血是什么原因| 花都有什么花| 1991年属羊是什么命| 前列腺钙化是什么病| 手脚发麻挂什么科| 2024年属龙的是什么命| 胆囊切除后吃什么好| 锌是什么颜色| 去痘印用什么药膏好| 6月5号是什么星座的| 糖代谢增高是什么意思| 人为什么要抽烟| 严什么的态度| au750是什么金属| 双侧下鼻甲肥大是什么意思| 秦始皇的母亲叫什么名字| 心疼是什么意思| 水蛭怕什么| 聿五行属什么| 巫是什么意思| 千里江陵是什么意思| 喝完酒头疼是什么原因| 做功是什么意思| 百度Jump to content

恢复为主 天津女排沪上开练

From Wikipedia, the free encyclopedia
百度 连银行、金融业职员想要来澳门都很难,官员就更少了。

Combinatorial game theory measures game complexity in several ways:

  1. State-space complexity (the number of legal game positions from the initial position)
  2. Game tree size (total number of possible games)
  3. Decision complexity (number of leaf nodes in the smallest decision tree for initial position)
  4. Game-tree complexity (number of leaf nodes in the smallest full-width decision tree for initial position)
  5. Computational complexity (asymptotic difficulty of a game as it grows arbitrarily large)

These measures involve understanding the game positions, possible outcomes, and computational complexity of various game scenarios.

Measures of game complexity

[edit]

State-space complexity

[edit]

The state-space complexity of a game is the number of legal game positions reachable from the initial position of the game.[1]

When this is too hard to calculate, an upper bound can often be computed by also counting (some) illegal positions (positions that can never arise in the course of a game).

Game tree size

[edit]

The game tree size is the total number of possible games that can be played. This is the number of leaf nodes in the game tree rooted at the game's initial position.

The game tree is typically vastly larger than the state-space because the same positions can occur in many games by making moves in a different order (for example, in a tic-tac-toe game with two X and one O on the board, this position could have been reached in two different ways depending on where the first X was placed). An upper bound for the size of the game tree can sometimes be computed by simplifying the game in a way that only increases the size of the game tree (for example, by allowing illegal moves) until it becomes tractable.

For games where the number of moves is not limited (for example by the size of the board, or by a rule about repetition of position) the game tree is generally infinite.

Decision trees

[edit]

A decision tree is a subtree of the game tree, with each position labelled "player A wins", "player B wins", or "draw" if that position can be proved to have that value (assuming best play by both sides) by examining only other positions in the graph. Terminal positions can be labelled directly—with player A to move, a position can be labelled "player A wins" if any successor position is a win for A; "player B wins" if all successor positions are wins for B; or "draw" if all successor positions are either drawn or wins for B. (With player B to move, corresponding positions are marked similarly.)

The following two methods of measuring game complexity use decision trees:

Decision complexity

[edit]

Decision complexity of a game is the number of leaf nodes in the smallest decision tree that establishes the value of the initial position.

Game-tree complexity

[edit]

Game-tree complexity of a game is the number of leaf nodes in the smallest full-width decision tree that establishes the value of the initial position.[1] A full-width tree includes all nodes at each depth. This is an estimate of the number of positions one would have to evaluate in a minimax search to determine the value of the initial position.

It is hard even to estimate the game-tree complexity, but for some games an approximation can be given by , where b is the game's average branching factor and d is the number of plies in an average game.

Computational complexity

[edit]

The computational complexity of a game describes the asymptotic difficulty of a game as it grows arbitrarily large, expressed in big O notation or as membership in a complexity class. This concept doesn't apply to particular games, but rather to games that have been generalized so they can be made arbitrarily large, typically by playing them on an n-by-n board. (From the point of view of computational complexity, a game on a fixed size of board is a finite problem that can be solved in O(1), for example by a look-up table from positions to the best move in each position.)

The asymptotic complexity is defined by the most efficient algorithm for solving the game (in terms of whatever computational resource one is considering). The most common complexity measure, computation time, is always lower-bounded by the logarithm of the asymptotic state-space complexity, since a solution algorithm must work for every possible state of the game. It will be upper-bounded by the complexity of any particular algorithm that works for the family of games. Similar remarks apply to the second-most commonly used complexity measure, the amount of space or computer memory used by the computation. It is not obvious that there is any lower bound on the space complexity for a typical game, because the algorithm need not store game states; however many games of interest are known to be PSPACE-hard, and it follows that their space complexity will be lower-bounded by the logarithm of the asymptotic state-space complexity as well (technically the bound is only a polynomial in this quantity; but it is usually known to be linear).

  • The depth-first minimax strategy will use computation time proportional to the game's tree-complexity (since it must explore the whole tree), and an amount of memory polynomial in the logarithm of the tree-complexity (since the algorithm must always store one node of the tree at each possible move-depth, and the number of nodes at the highest move-depth is precisely the tree-complexity).
  • Backward induction will use both memory and time proportional to the state-space complexity, as it must compute and record the correct move for each possible position.

Example: tic-tac-toe (noughts and crosses)

[edit]

For tic-tac-toe, a simple upper bound for the size of the state space is 39 = 19,683. (There are three states for each of the nine cells.) This count includes many illegal positions, such as a position with five crosses and no noughts, or a position in which both players have a row of three. A more careful count, removing these illegal positions, gives 5,478.[2][3] And when rotations and reflections of positions are considered identical, there are only 765 essentially different positions.

To bound the game tree, there are 9 possible initial moves, 8 possible responses, and so on, so that there are at most 9! or 362,880 total games. However, games may take less than 9 moves to resolve, and an exact enumeration gives 255,168 possible games. When rotations and reflections of positions are considered the same, there are only 26,830 possible games.

The computational complexity of tic-tac-toe depends on how it is generalized. A natural generalization is to m,n,k-games: played on an m by n board with winner being the first player to get k in a row. This game can be solved in DSPACE(mn) by searching the entire game tree. This places it in the important complexity class PSPACE; with more work, it can be shown to be PSPACE-complete.[4]

Complexities of some well-known games

[edit]

Due to the large size of game complexities, this table gives the ceiling of their logarithm to base 10. (In other words, the number of digits). All of the following numbers should be considered with caution: seemingly minor changes to the rules of a game can change the numbers (which are often rough estimates anyway) by tremendous factors, which might easily be much greater than the numbers shown.

Notes

[edit]
  1. ^ Double dummy bridge (i.e., double dummy problems in the context of contract bridge) is not a proper board game but has a similar game tree, and is studied in computer bridge. The bridge table can be regarded as having one slot for each player and trick to play a card in, which corresponds to board size 52. Game-tree complexity is a very weak upper bound: 13! to the power of 4 players regardless of legality. State-space complexity is for one given deal; likewise regardless of legality but with many transpositions eliminated. The last 4 plies are always forced moves with branching factor 1.

References

[edit]
  1. ^ a b c d e f g h i j k l Victor Allis (1994). Searching for Solutions in Games and Artificial Intelligence (PDF) (Ph.D. thesis). University of Limburg, Maastricht, The Netherlands. ISBN 90-900748-8-0.
  2. ^ "combinatorics - TicTacToe State Space Choose Calculation". Mathematics Stack Exchange. Retrieved 2025-08-14.
  3. ^ T, Brian (October 20, 2018). "Btsan/generate_tictactoe". GitHub. Retrieved 2025-08-14.
  4. ^ Stefan Reisch (1980). "Gobang ist PSPACE-vollst?ndig (Gobang is PSPACE-complete)". Acta Informatica. 13 (1): 59–66. doi:10.1007/bf00288536. S2CID 21455572.
  5. ^ a b c d Stefan Reisch (1981). "Hex ist PSPACE-vollst?ndig (Hex is PSPACE-complete)". Acta Inform (15): 167–191.
  6. ^ Slany, Wolfgang (2000). "The complexity of graph Ramsey games". In Marsland, T. Anthony; Frank, Ian (eds.). Computers and Games, Second International Conference, CG 2000, Hamamatsu, Japan, October 26-28, 2000, Revised Papers. Lecture Notes in Computer Science. Vol. 2063. Springer. pp. 186–203. doi:10.1007/3-540-45579-5_12.
  7. ^ a b c d e f H. J. van den Herik; J. W. H. M. Uiterwijk; J. van Rijswijck (2002). "Games solved: Now and in the future". Artificial Intelligence. 134 (1–2): 277–311. doi:10.1016/S0004-3702(01)00152-7.
  8. ^ Orman, Hilarie K. (1996). "Pentominoes: a first player win" (PDF). In Nowakowski, Richard J. (ed.). Games of No Chance: Papers from the Combinatorial Games Workshop held in Berkeley, CA, July 11–21, 1994. Mathematical Sciences Research Institute Publications. Vol. 29. Cambridge University Press. pp. 339–344. ISBN 0-521-57411-0. MR 1427975.
  9. ^ See van den Herik et al for rules.
  10. ^ John Tromp (2010). "John's Connect Four Playground".
  11. ^ Lachmann, Michael; Moore, Cristopher; Rapaport, Ivan (2002). "Who wins Domineering on rectangular boards?". In Nowakowski, Richard (ed.). More Games of No Chance: Proceedings of the 2nd Combinatorial Games Theory Workshop held in Berkeley, CA, July 24–28, 2000. Mathematical Sciences Research Institute Publications. Vol. 42. Cambridge University Press. pp. 307–315. ISBN 0-521-80832-4. MR 1973019.
  12. ^ Jonathan Schaeffer; et al. (July 6, 2007). "Checkers is Solved". Science. 317 (5844): 1518–1522. Bibcode:2007Sci...317.1518S. doi:10.1126/science.1144079. PMID 17641166. S2CID 10274228.
  13. ^ Schaeffer, Jonathan (2007). "Game over: Black to play and draw in checkers" (PDF). ICGA Journal. 30 (4): 187–197. doi:10.3233/ICG-2007-30402. Archived from the original (PDF) on 2025-08-14.
  14. ^ a b J. M. Robson (1984). "N by N checkers is Exptime complete". SIAM Journal on Computing. 13 (2): 252–267. doi:10.1137/0213018.
  15. ^ See Allis 1994 for rules
  16. ^ Bonnet, Edouard; Jamain, Florian; Saffidine, Abdallah (2013). "On the complexity of trick-taking card games". In Rossi, Francesca (ed.). IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013. IJCAI/AAAI. pp. 482–488.
  17. ^ M.P.D. Schadd; M.H.M. Winands; J.W.H.M. Uiterwijk; H.J. van den Herik; M.H.J. Bergsma (2008). "Best Play in Fanorona leads to Draw" (PDF). New Mathematics and Natural Computation. 4 (3): 369–387. doi:10.1142/S1793005708001124.
  18. ^ Andrea Galassi (2018). "An Upper Bound on the Complexity of Tablut".
  19. ^ a b G.I. Bell (2009). "The Shortest Game of Chinese Checkers and Related Problems". Integers. 9. arXiv:0803.1245. Bibcode:2008arXiv0803.1245B. doi:10.1515/INTEG.2009.003. S2CID 17141575.
  20. ^ a b Kasai, Takumi; Adachi, Akeo; Iwata, Shigeki (1979). "Classes of pebble games and complete problems". SIAM Journal on Computing. 8 (4): 574–586. doi:10.1137/0208046. MR 0573848. Proves completeness of the generalization to arbitrary graphs.
  21. ^ Iwata, Shigeki; Kasai, Takumi (1994). "The Othello game on an board is PSPACE-complete". Theoretical Computer Science. 123 (2): 329–340. doi:10.1016/0304-3975(94)90131-7. MR 1256205.
  22. ^ Robert Briesemeister (2009). Analysis and Implementation of the Game OnTop (PDF) (Thesis). Maastricht University, Dept of Knowledge Engineering.
  23. ^ Mark H.M. Winands (2004). Informed Search in Complex Games (PDF) (Ph.D. thesis). Maastricht University, Maastricht, The Netherlands. ISBN 90-5278-429-9.
  24. ^ The size of the state space and game tree for chess were first estimated in Claude Shannon (1950). "Programming a Computer for Playing Chess" (PDF). Philosophical Magazine. 41 (314). Archived from the original (PDF) on 2025-08-14. Shannon gave estimates of 1043 and 10120 respectively, smaller than the upper bound in the table, which is detailed in Shannon number.
  25. ^ Fraenkel, Aviezri S.; Lichtenstein, David (1981). "Computing a perfect strategy for chess requires time exponential in ". Journal of Combinatorial Theory, Series A. 31 (2): 199–214. doi:10.1016/0097-3165(81)90016-9. MR 0629595.
  26. ^ Gualà, Luciano; Leucci, Stefano; Natale, Emanuele (2014). "Bejeweled, Candy Crush and other match-three games are (NP-)hard". 2014 IEEE Conference on Computational Intelligence and Games, CIG 2014, Dortmund, Germany, August 26-29, 2014. IEEE. pp. 1–8. arXiv:1403.5830. doi:10.1109/CIG.2014.6932866.
  27. ^ Diederik Wentink (2001). Analysis and Implementation of the game Gipf (PDF) (Thesis). Maastricht University.
  28. ^ Chang-Ming Xu; Ma, Z.M.; Jun-Jie Tao; Xin-He Xu (2009). "Enhancements of proof number search in connect6". 2009 Chinese Control and Decision Conference. p. 4525. doi:10.1109/CCDC.2009.5191963. ISBN 978-1-4244-2722-2. S2CID 20960281.
  29. ^ Hsieh, Ming Yu; Tsai, Shi-Chun (October 1, 2007). "On the fairness and complexity of generalized k -in-a-row games". Theoretical Computer Science. 385 (1–3): 88–100. doi:10.1016/j.tcs.2007.05.031. Retrieved 2025-08-14 – via dl.acm.org.
  30. ^ Tesauro, Gerald (May 1, 1992). "Practical issues in temporal difference learning". Machine Learning. 8 (3–4): 257–277. doi:10.1007/BF00992697.
  31. ^ a b Shi-Jim Yen, Jr-Chang Chen; Tai-Ning Yang; Shun-Chin Hsu (March 2004). "Computer Chinese Chess" (PDF). International Computer Games Association Journal. 27 (1): 3–18. doi:10.3233/ICG-2004-27102. S2CID 10336286. Archived from the original (PDF) on 2025-08-14.
  32. ^ a b Donghwi Park (2015). "Space-state complexity of Korean chess and Chinese chess". arXiv:1507.06401 [math.GM].
  33. ^ Chorus, Pascal. "Implementing a Computer Player for Abalone Using Alpha-Beta and Monte-Carlo Search" (PDF). Dept of Knowledge Engineering, Maastricht University. Retrieved 2025-08-14.
  34. ^ Kopczynski, Jacob S (2014). Pushy Computing: Complexity Theory and the Game Abalone (Thesis). Reed College.
  35. ^ Joosten, B. "Creating a Havannah Playing Agent" (PDF). Retrieved 2025-08-14.
  36. ^ E. Bonnet; F. Jamain; A. Saffidine (March 25, 2014). "Havannah and TwixT are PSPACE-complete". arXiv:1403.6518 [cs.CC].
  37. ^ Kevin Moesker (2009). Txixt: Theory, Analysis, and Implementation (PDF) (Thesis). Faculty of Humanities and Sciences of Maastricht University.
  38. ^ Lisa Glendenning (May 2005). Mastering Quoridor (PDF). Computer Science (B.Sc. thesis). University of New Mexico. Archived from the original (PDF) on 2025-08-14.
  39. ^ Cathleen Heyden (2009). Implementing a Computer Player for Carcassonne (PDF) (Thesis). Maastricht University, Dept of Knowledge Engineering.
  40. ^ The lower branching factor is for the second player.
  41. ^ Kloetzer, Julien; Iida, Hiroyuki; Bouzy, Bruno (2007). "The Monte-Carlo approach in Amazons" (PDF). Computer Games Workshop, Amsterdam, the Netherlands, 15-17 June 2007. pp. 185–192.
  42. ^ P. P. L. M. Hensgens (2001). "A Knowledge-Based Approach of the Game of Amazons" (PDF). Universiteit Maastricht, Institute for Knowledge and Agent Technology.
  43. ^ R. A. Hearn (February 2, 2005). "Amazons is PSPACE-complete". arXiv:cs.CC/0502013.
  44. ^ Hiroyuki Iida; Makoto Sakuta; Jeff Rollason (January 2002). "Computer shogi". Artificial Intelligence. 134 (1–2): 121–144. doi:10.1016/S0004-3702(01)00157-6.
  45. ^ H. Adachi; H. Kamekawa; S. Iwata (1987). "Shogi on n × n board is complete in exponential time". Trans. IEICE. J70-D: 1843–1852.
  46. ^ F.C. Schadd (2009). Monte-Carlo Search Techniques in the Modern Board Game Thurn and Taxis (PDF) (Thesis). Maastricht University. Archived from the original (PDF) on 2025-08-14.
  47. ^ John Tromp; Gunnar Farneb?ck (2007). "Combinatorics of Go". This paper derives the bounds 48<log(log(N))<171 on the number of possible games N.
  48. ^ John Tromp (2016). "Number of legal Go positions".
  49. ^ "Statistics on the length of a go game".
  50. ^ J. M. Robson (1983). "The complexity of Go". Information Processing; Proceedings of IFIP Congress. pp. 413–417.
  51. ^ Christ-Jan Cox (2006). "Analysis and Implementation of the Game Arimaa" (PDF).
  52. ^ David Jian Wu (2011). "Move Ranking and Evaluation in the Game of Arimaa" (PDF).
  53. ^ Brian Haskin (2006). "A Look at the Arimaa Branching Factor".
  54. ^ A.F.C. Arts (2010). Competitive Play in Stratego (PDF) (Thesis). Maastricht.
  55. ^ CDA Evans and Joel David Hamkins (2014). "Transfinite game values in infinite chess". arXiv:1302.4377 [math.LO].
  56. ^ Stefan Reisch, Joel David Hamkins, and Phillipp Schlicht (2012). "The mate-in-n problem of infinite chess is decidable". Conference on Computability in Europe: 78–88. arXiv:1201.5597.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  57. ^ Alex Churchill, Stella Biderman, and Austin Herrick (2020). "Magic: the Gathering is Turing Complete". arXiv:1904.09828 [cs.AI].{{cite arXiv}}: CS1 maint: multiple names: authors list (link)
  58. ^ Stella Biderman (2020). "Magic: the Gathering is as Hard as Arithmetic". arXiv:2003.05119 [cs.AI].
  59. ^ Lokshtanov, Daniel; Subercaseaux, Bernardo (May 14, 2022). "Wordle is NP-hard". arXiv:2203.16713 [cs.CC].

See also

[edit]
[edit]
脾阳虚吃什么中成药 高血压头晕吃什么药 月经量多是什么原因 svc是什么意思 阴茎是什么意思
肝气郁结吃什么中药 阿玛尼手表属于什么档次 甲亢是什么症状 天津市市长什么级别 葛根粉是什么
夫妻少配无刑是什么意思 花瓣是什么意思 福星贵人是什么意思 青瓜和黄瓜有什么区别 胃酸恶心想吐什么原因
什么样的嘴巴 鼻子油腻是什么原因 做什么业务员好 肺不张是什么意思 吨位是什么意思
梦见鸡啄我是什么意思hcv9jop1ns2r.cn 视网膜为什么会脱落hcv7jop7ns3r.cn annie英文名什么意思hcv8jop0ns4r.cn 精液是什么组成的hcv7jop7ns4r.cn 食物中毒吃什么解毒最快hcv9jop6ns4r.cn
ab型血可以给什么血型输血hcv8jop6ns3r.cn 雀舌属于什么茶hcv9jop2ns3r.cn 生物工程是什么专业hcv9jop5ns5r.cn 凭什么我买单hcv8jop2ns1r.cn 咖啡伴侣是什么hcv9jop5ns9r.cn
知了幼虫叫什么liaochangning.com 什么是毛囊炎fenrenren.com 手脚麻木吃什么药最管用kuyehao.com 心率不齐有什么危害hcv8jop4ns1r.cn 运是什么结构hcv8jop9ns1r.cn
腿麻脚麻用什么药能治hcv9jop3ns3r.cn 下作是什么意思hcv8jop9ns8r.cn 自然周是什么意思hcv8jop9ns3r.cn 转诊是什么意思hcv8jop5ns4r.cn 女生排卵期有什么症状hcv9jop5ns2r.cn
百度