1r是什么意思| 2月24日什么星座| dna是什么| 沉香是什么东西| 12月16是什么星座| 健康证需要什么材料| 30岁以上适合用什么牌子的护肤品| 黑脚鸡是什么品种| 哲字五行属什么| 经常口臭的人是什么原因引起的| 吃什么缓解孕吐| 脱发吃什么| 清炖牛肉放什么调料| 傲气是什么意思| 隐翅虫咬了用什么药| 麦冬的功效与作用是什么| 巴甫洛夫的狗比喻什么| 邮件号码是什么| 何首乌长什么样| 道歉送什么花| 圆寂为什么坐着就死了| 血压低头疼是什么原因| 痴汉是什么意思| 腊猪脚炖什么好吃| 地什么人什么| 空调什么度数最省电| 抗缪勒氏管激素是检查什么的| 全性向是什么意思| 橘色五行属什么| 嫌恶是什么意思| 卡密是什么| 身主天机是什么意思| 总胆固醇高说明什么| 脸部出汗多是什么原因引起的| 正月十八是什么星座| 少了一个肾有什么影响| 大公鸡是什么牌子| 正常人为什么会得梅毒| mpa是什么单位| 吃东西想吐是什么原因| 什么饼干养胃最好| 刚刚什么地方地震了| 石棉是什么| 直接胆红素偏低是什么原因| 痛经喝什么能缓解| 肾阴虚吃什么食物补| 中国的特工组织叫什么| 为什么会长牙结石| 滚床单是什么意思| 回头鱼是什么鱼| 阴道什么形状| 什么是铅| 来月经头晕是什么原因| 下巴下面长痘痘是什么原因| g1p1是什么意思| 比利时说什么语言| 为什么眼睛老是痒| 体检前一天晚上吃什么| 什么是月令| 饮料喝多了有什么危害| 冬至有什么禁忌| 听佛歌有什么好处| 兔死狗烹什么意思| 喝桑叶茶有什么好处| 玉露茶属于什么茶| 痰是什么| 肠炎有什么表现| 冥王星是什么星| 离婚都需要什么| mm是什么意思| 泡沫是什么材料做的| 肾衰竭吃什么水果好| 什么情况下需要切除子宫| 三叉神经痛吃什么药好| 什么花最好看| 膝盖小腿酸软无力是什么原因| 79年属什么生肖| 眼睛红了是什么原因| 胃痛胃胀吃什么药| 铁树开花是什么生肖| 你有一双会说话的眼睛是什么歌| 年轻人为什么会低血压| 胃烧心吃什么食物好| 什么是过敏| 人为什么会近视| 无关风月是什么意思| 翡翠是什么| 后知后觉什么意思| 泥腿子是什么意思| 拉大便肛门口疼痛什么原因| 晚上肚子疼是什么原因| 竹叶青是什么| adh医学上是什么意思| 做激光近视眼手术有什么危害| 牙齿掉了一小块是什么原因| 羊水穿刺主要检查什么| 湿气重可以吃什么水果| 感冒了吃什么| 乙肝通过什么途径传染| 指甲有白点是什么原因| 子宫平位是什么意思| 蚊子喜欢什么味道| 南京大屠杀是什么时候| 大人发烧吃什么退烧药| 眼睛为什么会散光| 亚麻酸是什么东西| 老虎凳是什么| 动脉硬化用什么药好| 子宫内膜16mm说明什么| 诸法无我是什么意思| 峻字五行属什么| 皮肤过敏不能吃什么食物| 可逆是什么意思| 膝关节置换后最怕什么| 便秘是什么症状| 月经来一点又不来了是什么原因| 为什么人要喝水| 肌无力有什么症状| 藏毛窦是什么病| 知了为什么叫| 如何看五行缺什么| 知了代表什么生肖| 感悟是什么意思| 乙肝两对半145阳性是什么意思| 胃不好吃什么水果好| 白芍有什么功效和作用| 莓茶是什么茶| 舌头黄是什么原因| 炒熟的黑豆有什么功效| 什么水果降血糖| 细思极恐是什么意思| 刷题是什么意思| 到是什么意思| 腹痛腹泻吃什么药| 蜱虫咬了什么症状| fl是胎儿的什么意思| 心字旁的字有什么| 什么人| 脚后跟痛是什么问题| 手指关节痛挂什么科| 输卵管造影什么时候检查最好| 女儿红是什么| 38岁属什么| 什么茶去火| 什么叫环比| 吃饭时头晕是什么原因| 鹿角粉有什么功效和作用| 小孩眼屎多是什么原因引起的| 私密是什么意思| 铁观音什么季节喝最好| 空巢老人什么意思| 惊风是什么意思| 全身出虚汗多是什么原因造成的| 王字旁加己念什么| 肛裂用什么药治最好效果最快| 4.4是什么星座| 夜宵吃什么好| 梦见自己生病了是什么意思| 草泥马是什么| 戴银镯子变黑是什么原因| 昆字五行属什么| 艾条什么牌子好用| 面首是什么| 尿急是什么症状| 芒果吃了有什么好处和坏处| 什么是免疫组化| 甘油三酯是什么| 虚岁是什么意思| 葡萄糖高是什么原因| 什么是血沉| 1926年属什么生肖| 心脏t波改变吃什么药| 炖羊骨头放什么调料| 北方的木瓜叫什么| 肝囊肿饮食要注意什么| 茯苓是什么植物| 嘴巴里面起泡是什么原因引起的| 手脚软无力是什么原因引起的| 浪凡算是什么档次的| r级是什么意思| tspot检查阳性能说明什么| 喜欢趴着睡是什么原因| 石墨灰是什么颜色| nbr是什么材质| 疣体是什么| 六月十号是什么星座| 什么影院| 合什么意思| 占有欲是什么意思| 感冒咳嗽吃什么水果好| 前胸后背出汗多是什么原因| 西晋之后是什么朝代| hpv疫苗是什么| 什么叫疱疹| 送镜子代表什么意思| 棒棒糖是什么意思| 熠熠生辉是什么意思| 右肺上叶结节什么意思| 科目一考试需要带什么| 鸭肉煲汤放什么材料好| 睡醒后嘴巴苦什么原因| 11是什么意思| 好五行属什么| 鸟屎掉手上有什么预兆| 为什么睡觉流口水很臭| 金字旁的字有什么| 沙僧的武器是什么| 除外是什么意思| 故事情节是什么意思| hi是什么意思| uva是什么意思| 浅表性胃炎吃什么中成药最好| 三点水加邑念什么| 车前草有什么功效和作用| cross是什么牌子| 小腿酸痛什么原因| 口臭什么原因| 什么是重水| 朝花夕拾什么意思| 过继是什么意思| 张学友和张家辉什么关系| 什么猪没有嘴| 鸩杀是什么意思| ug是什么意思| 降钙素是查什么的| 4月8号是什么星座| 维生素B3叫什么名字| 化疗和靶向有什么区别| 炖鸡肉放什么调料| 木耳吃多了有什么坏处| 七月一号是什么节| 实时播报什么意思| 盗汗是什么原因| 技师是干什么的| 已是什么意思| 海苔吃多了有什么坏处| 雌激素过高吃什么药| 60岁是什么之年| 小便短赤是什么症状| 石榴木是什么生肖| 石墨灰是什么颜色| 检察院是干什么的| 仓鼠和老鼠有什么区别| 变化无穷是什么生肖| 怀姜是什么姜| 牛蛙不能和什么一起吃| 额头上长痘痘是什么原因| 花骨朵是什么意思| 枇杷是什么季节的水果| 半月板损伤有什么症状| 为什么前壁容易生男孩| 谆谆教诲什么意思| 大头儿子叫什么名字| 鸡肠炎用什么药效果好| 文化内涵是什么意思| 海纳百川什么意思| 肠胃炎可以吃什么食物| 服中药期间忌吃什么| 什么原因引起低压高| 骨关节疼痛什么原因| 冠冕是什么意思| 护士节送什么鲜花| 天秤座的幸运色是什么| 汐五行属性是什么| 百度Jump to content

韩国发布“中期国防蓝图” 指导未来国防能力发展

From Wikipedia, the free encyclopedia
百度 普京随后通过克里姆林宫网站发表视频讲话说,将以3月1日发布的国情咨文为具体、明确的行动计划,持续、深入、稳健地推动俄经济社会变革,其中包括通过科技提高经济效率、增加民众收入。

In game theory, Zermelo's theorem is a theorem about finite two-person games of perfect information in which the players move alternately and in which chance does not affect the decision making process. It says that if the game cannot end in a draw, then one of the two players must have a winning strategy (i.e. can force a win). An alternate statement is that for a game meeting all of these conditions except the condition that a draw is now possible, then either the first-player can force a win, or the second-player can force a win, or both players can at least force a draw.[1] The theorem is named after Ernst Zermelo, a German mathematician and logician, who proved the theorem for the example game of chess in 1913.

Example

[edit]

Zermelo's theorem can be applied to all finite-stage two-player games with complete information and alternating moves. The game must satisfy the following criteria: there are two players in the game; the game is of perfect information; the board game is finite; the two players can take alternate turns; and there is no chance element present. Zermelo has stated that there are many games of this type; however his theorem has been applied mostly to the game chess.[2][3]

When applied to chess, Zermelo's theorem states "either White can force a win, or Black can force a win, or both sides can force at least a draw".[2][3]

Zermelo's algorithm is a cornerstone algorithm in game-theory; however, it can also be applied in areas outside of finite games. Apart from chess, Zermelo's theorem is applied across all areas of computer science. In particular, it is applied in model checking and value interaction.[4]

Conclusions of Zermelo's theorem

[edit]

Zermelo's work shows that in two-person zero-sum games with perfect information, if a player is in a winning position, then that player can always force a win no matter what strategy the other player may employ. Furthermore, and as a consequence, if a player is in a winning position, it will never require more moves than there are positions in the game (with a position defined as position of pieces as well as the player next to move).[1]

Publication history

[edit]

In 1912, during the Fifth International Congress of Mathematicians in Cambridge, Ernst Zermelo gave two talks. The first one covered axiomatic and genetic methods in the foundation of mathematical disciplines, and the second speech was on the game of chess. The second speech prompted Zermelo to write a paper on game theory. Being an avid chess player, Zermelo was concerned with application of set theory to the game of chess. Zermelo's original paper describing the theorem, über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, was published in German in 1913. It can be considered as the first known paper on game theory.[5] Ulrich Schwalbe and Paul Walker translated Zermelo's paper into English in 1997 and published the translation in the appendix to Zermelo and the Early History of Game Theory.[1]

Details

[edit]

Zermelo considers the class of two-person games without chance, where players have strictly opposing interests and where only a finite number of positions are possible. Although in the game only finitely many positions are possible, Zermelo allows infinite sequences of moves since he does not consider stopping rules. Thus, he allows for the possibility of infinite games. Then he addresses two problems:

  1. What does it mean for a player to be in a 'winning' position and is it possible to define this in an objective mathematical manner?
  2. If the player is in a winning position, can the number of moves needed to force the win be determined?

To answer the first question, Zermelo states that a necessary and sufficient condition is the nonemptyness of a certain set, containing all possible sequences of moves such that a player wins independently of how the other player plays. But should this set be empty, the best a player could achieve would be a draw. So Zermelo defines another set containing all possible sequences of moves such that a player can postpone his loss for an infinite number of moves, which implies a draw. This set may also be empty, i.e., the player can avoid his loss for only finitely many moves if his opponent plays correctly. But this is equivalent to the opponent being able to force a win. This is the basis for all modern versions of Zermelo's theorem.

About the second question, Zermelo claimed that it will never take more moves than there are positions in the game. His proof is a proof by contradiction: Assume that a player can win in a number of moves larger than the number of positions. By the pigeonhole principle, at least one winning position must have appeared twice. So the player could have played at the first occurrence in the same way as he does at the second and thus could have won in fewer moves than there are positions.

In 1927, a Hungarian mathematician Dénes K?nig revised Zermelo's paper and pointed out some gaps in the original work. First of all, K?nig argues that Zermelo did not prove that a player, for example White, who is in a winning position is always able to force a win by making moves smaller than the number of positions in the game. Zermelo argued that White can change its behaviour at the first possibility of any related winning position and win without repetition. However, K?nig maintains that this argument is not correct as it is not enough to reduce the number of moves in a single game below the number of possible positions. Thus, Zermelo claimed, but did not show, that a winning player can always win without repetition. The second objection by K?nig is that the strategy 'do the same at the first occurrence of a position as at the second and thus win in fewer moves' cannot be made if it is Black's turn to move in this position. However, this argument is not correct because Zermelo considered two positions different whether Black or White makes a move.[5]

Zermelo's theorem and backward induction

[edit]

It has been believed that Zermelo used backward induction as his method of proof. However, recent research on the Zermelo's theorem demonstrates that backward induction was not used to explain the strategy behind chess. Contrary to the popular belief, chess is not a finite game without at least one of the fifty move rule or threefold repetition rule. Strictly speaking, chess is an infinite game therefore backward induction does not provide the minmax theorem in this game.[6]

Backward induction is a process of reasoning backward in time. It is used to analyse and solve extensive form games of perfect information. This method analyses the game starting at the end, and then works backwards to reach the beginning. In the process, backward induction determines the best strategy for the player that made the last move. Then the ultimate strategy is determined for the next-to last moving player of the game. The process is repeated again determining the best action for every point in the game has been found. Therefore, backward induction determines the Nash equilibrium of every subgame in the original game.[4]

There is a number of reasons as to why backward induction is not present in the Zermelo's original paper:

Firstly, a recent study by Schwalbe and Walker (2001) demonstrated that Zermelo's paper contained basic idea of backward induction; however Zermelo did not make a formal statement on the theorem. Zermelo's original method was the idea of non-repetition. The first mention of backward induction was provided by László Kalmár in 1928. Kalmár generalised the work of Zermelo and K?nig in his paper "On the Theory of Abstract Games". Kalmár was concerned with the question: "Given a winning position, how quickly can a win be forced?". His paper showed that winning without repetition is possible given that a player is a winning position. Kalmár's proof of non-repetition was proof by backward induction. In his paper, Kalmár introduced the concept of subgame and tactic. Kalmár's central argument was that a position can be a winning position only if a player can win in a finite number of moves. Also, a winning position for player A is always a losing position for player B.[7]

References

[edit]
  1. ^ a b c Schwalbe, Ulrich; Walker, Paul. "Zermelo and the Early History of Game Theory" (PDF).
  2. ^ a b MacQuarrie, John (January 2005). "Mathematics and Chess, Fundamentals". Archived from the original on January 12, 2017.
  3. ^ a b Aumann, R. J. (1989). Lectures on Game Theory (PDF). Boulder, CO: Westview Press. p. 1.
  4. ^ a b Wooldridge, Michael (17 March 2015). "Thinking Backward with Professor Zermelo". IEEE Intelligent Systems. 30 (2): 62–67. doi:10.1109/MIS.2015.36. S2CID 12397521.
  5. ^ a b Ebbinghaus, Heinz-Dieter (14 October 2010). Ernst Zermelo: An Approach to His Life and Work (2 ed.). Berlin: Springer. p. 150. ISBN 9783642080500. Retrieved 26 April 2021.
  6. ^ Ewerhart, Christian (May 2002). "Backward Induction and the Game-Theoretic Analysis of Chess" (PDF). Games and Economic Behavior. 39 (2): 206–214. doi:10.1006/game.2001.0900.
  7. ^ Schwalbe, Ulrich; Paul, Walker (January 2001). "Zermelo and the Early History Game Theory". Games and Economic Behavior. 34 (1): 123–137. doi:10.1006/game.2000.0794. Retrieved 26 April 2021.
[edit]
  • Original Paper(in German)
  • Ulrich Schwalbe, Paul Walker, Zermelo and the Early History of Game Theory, Games and Economic Behavior, Volume 34, 2001, 123-137, online
双侧下鼻甲肥大是什么意思 fizz是什么意思 世故是什么意思 履是什么意思 嘴唇裂口是什么原因
姑姑和我是什么关系 左下腹疼是什么原因 脾是干什么用的 脚心疼痛是什么原因引起的 四月27日是什么星座
疳积是什么 火龙果和什么不能一起吃 什么叫室性早搏 办香港通行证要准备什么材料 肾小球滤过率偏高说明什么
产后能吃什么水果 摆架子是什么意思 拔智齿第二天可以吃什么 苦瓜和什么搭配最好 狗吐了是什么原因
pof是什么意思hcv8jop6ns7r.cn 4月份什么星座adwl56.com 胸部彩超能检查出什么hcv8jop2ns4r.cn 头发长得慢是什么原因youbangsi.com emoji是什么意思hcv9jop6ns9r.cn
狗皮膏药什么意思mmeoe.com 什么杀精子最厉害hcv7jop5ns3r.cn 站着说话不腰疼是什么意思hcv7jop7ns0r.cn 梦见买鸡蛋是什么意思周公解梦hcv7jop5ns0r.cn 纷扰是什么意思hcv8jop4ns5r.cn
鹦鹉吃什么食物bjhyzcsm.com 凡士林是什么东西jinxinzhichuang.com 什么叫眼睛散光hcv9jop6ns8r.cn 头晕是什么引起的hcv9jop6ns8r.cn offer什么意思hcv9jop0ns2r.cn
什么叫石女mmeoe.com love是什么词性hcv8jop7ns2r.cn 做梦梦到自己怀孕了是什么意思hcv8jop7ns2r.cn 基本医疗保险包括什么hcv9jop7ns9r.cn 乙型肝炎病毒表面抗体阳性是什么意思hcv9jop6ns4r.cn
百度