胰腺炎为什么不能同房| 什么是缓刑意思是什么| 山楂搭配什么泡水喝好| 脑供血不足吃什么药好| 肺部有问题一般会出现什么症状| 表哥的女儿叫什么| 养狗的人容易得什么病| 宝宝湿疹用什么药膏| 鸭肫是什么| 过午不食什么意思| 办理护照需要什么手续| 膜拜是什么意思| 气短吃什么药立马见效| 2月18是什么星座| 放屁臭什么原因| 霸是什么生肖| 坐飞机需要带什么证件| 跑步后尿血是什么情况| 718什么星座| 促狭一笑是什么意思| 加德纳菌阳性是什么意思| 经常喝苏打水有什么好处和坏处| 脂蛋白a高是什么原因引起的| 生活老师是做什么的| 珀莱雅适合什么年龄| 黄辣丁是什么鱼| 舌头肿了是什么原因| 什么是棱长| 情绪不稳定易怒烦躁是什么症状| 梦见死去的朋友是什么意思| 摩登女郎是什么意思| 秋收冬藏是什么生肖| 虎跟什么生肖相冲| 孕妇吃什么是补铁的| 国家发改委主任什么级别| 抽筋缺什么维生素| 无故流鼻血是什么原因| 肠胀气是什么原因引起的怎么解决| 鼓动是什么意思| 阳历九月份是什么星座| 体态是什么意思| 4t什么意思| 抽动症是什么原因引起的| 高血压变成低血压是什么原因| 为什么会缺铁性贫血| 东星斑为什么这么贵| 不知为什么| 淋病吃什么药好的最快| 眼睛经常有眼屎是什么原因| 生蚝有什么功效| 弥陀是什么意思| 为什么嘴巴会臭| 甲亢是什么引起的| 脊椎挂什么科| 扁桃体发炎喉咙痛吃什么药| 集成灶什么品牌最好| 凉血是什么意思| 什么叫肝功能不全| 圣经是什么| 什么什么不舍| 04属什么| 老梗是什么病| 甲钴胺治疗什么病| 寿者相什么意思| 穿山甲到底说了什么| 1947年属什么| 707是什么意思| 裙带菜不能和什么一起吃| 男性尿路感染有什么症状| 破冰是什么意思| 和什么细什么的成语| 幽门螺杆菌用什么药| 智齿什么时候拔最好| 拔苗助长告诉我们什么道理| eland是什么牌子| 财星是什么意思| 为什么会有荨麻疹| 高烧拉肚子是什么原因| 头晕挂什么科| 伤口发炎化脓用什么药| 午时右眼跳是什么预兆| 1964年属什么的| 为什么250是骂人的话| 日落西山是什么生肖| 五红汤什么时候喝最好| 来月经前头痛什么原因| 43是什么意思| 为什么胸口疼| on是什么牌子| 眼压高是什么原因引起的| 子宫什么样子图片| 脾胃不好喝什么茶| 乙肝是什么病| 377是什么| 1981年五行属什么| 人生导师是什么意思| 扎马步有什么好处| EXP什么意思| 用什么水和面烙饼最软| 老被蚊子咬是什么原因| 泸州老窖是什么香型| 中年人手抖是什么原因| 味精的主要成分是什么| 酒蒙子是什么意思| 冷艳是什么意思| 鳄鱼的天敌是什么动物| 96199是什么电话| 甜茶为什么叫甜茶| 喝酒后手麻是什么原因| 冷战的男人是什么心理| 尿酸高多吃什么食物好| 做梦被打了是什么意思| 梦见自己来月经了什么预兆| 经期喝咖啡有什么影响| 子宫有积液是什么原因引起的| 耐药性什么意思| 心心相什么| 吃生姜对身体有什么好处和坏处| 水中加什么擦玻璃干净| 羟基维生素d是什么| 金鱼可以吃什么| 什么字五行属水| 喝酒上脸是什么原因| 胎盘2级是什么意思| 醋酸氯已定是什么药| 什么是腺瘤| 吃什么会影响验孕棒检验结果| 他达拉非是什么药| 小孩手指头脱皮是什么原因| 菠萝蜜吃多了有什么坏处| 什么吃蟑螂| 睡觉打呼噜是什么病| 拉美人是什么人种| 小孩说话不清楚挂什么科| 多囊肾是什么病| 智商135是什么水平| 吃什么能马上晕倒住院| 记忆力减退吃什么药| 淋巴是什么| 唯有女子与小人难养也什么意思| 护士资格证什么时候考| 男生眉毛浓黑代表什么| 白带有血丝是什么原因| 远视储备是什么意思| 羊日冲牛是什么意思| 什么是富氢水| 颞下颌紊乱挂什么科| 休克是什么意思| 气血两虚吃什么中成药| 经常口臭的人是什么原因引起的| 美白吃什么| 脑多普勒检查什么| 眼睛模糊是什么原因引起的| 气血亏吃什么补的快| 10月17日什么星座| 均可是什么意思| 立春吃什么食物| 蹭蹭是什么意思| 你是什么意思| 父母都是b型血孩子是什么血型| 腿抖是什么病的预兆| 4月28号是什么星座| 经常喝藕粉有什么好处| 玉字五行属什么| 乙肝两对半245阳性是什么意思| 口腔义齿是什么| 公安局是干什么的| 数字8五行属什么| 中指戴戒指代表什么| 黄体不足吃什么补最快| 阴虱用什么药物| 马是什么牌子的车| 什么的旅行| 血糖高了会有什么危害| 红加绿是什么颜色| 口甜是什么原因引起的| 一什么泪珠| 查心电图挂什么科| 石榴石什么颜色的最好| 伏羲和女娲是什么关系| 什么的花蕾| 相见恨晚是什么意思| 综合用地是什么性质| 儿郎是什么意思| 4月份是什么星座| 吃地屈孕酮片有什么副作用| 孝敬是什么意思| 男性支原体感染什么症状| 非洲人一日三餐吃什么| 儿童节送老婆什么礼物| 偏光眼镜是什么意思| 耳呜吃什么药最好| 甘油三酯高吃什么食物好| 孕妇脚肿是什么原因引起的| 芦笋是什么植物| 什么牌子充电宝好| 心肾不交是什么意思| lop是什么意思| 衣原体阴性是什么意思| 脚发胀是什么前兆| 做三明治需要什么材料| 白泽是什么| 胆固醇低是什么原因| 反常是什么意思| 小孩嗓子哑了吃什么药| 小猫不能吃什么| 下腹部胀是什么原因| ig什么意思| 石榴什么季节成熟| 1945年是什么年| 梦见眉毛掉了什么预兆| 佳偶天成什么意思| gy是什么意思| tvoc是什么意思| 30岁属什么| 小孩肚子疼吃什么药| 走胎是什么意思| 感激涕零什么意思| 盐水泡脚有什么好处| 啫啫煲为什么念jue| 什么补钾最快| 老是嗝气是什么原因| 君无戏言什么意思| 积劳成疾的疾什么意思| 良字少一点是什么字| 吃什么除体内湿气最快| as是什么| 王加呈念什么| maxco是什么牌子| 瓠子和什么相克| 送女朋友什么礼物好| 落班是什么意思| 女人为什么会得霉菌| 体重突然下降是什么原因| 浮粉是什么原因引起的| 什么病会引起背部疼痛| 上海为什么叫魔都| 敦伦是什么意思| 不排卵是什么原因造成| 梦见把头发剪短了是什么意思| 反手引体向上练什么肌肉| 冬至节气的含义是什么| rag是什么意思| 8月27号是什么星座| 出院记录是什么| 高处不胜寒的胜是什么意思| 真菌镜检阳性是什么意思| est.是什么意思| 氯仿是什么| 低压高什么原因| mdzz是什么意思| 贾字五行属什么| 渗析是什么意思| 踩指压板有什么好处| o型血和a型血生的孩子是什么血型| 幺妹是什么意思| 碧是什么颜色| 耳廓有痣代表什么| 翡翠都有什么颜色| 半年抛是什么意思| 什么叫流产| 首长是什么级别| 夏季吃什么菜| 蟑螂长什么样子| 百度Jump to content

恩智浦携手亚马逊,为智能家居带来更多Alexa体验

From Wikipedia, the free encyclopedia
(Redirected from Game-tree complexity)
百度 2018年是全面贯彻党的十九大精神的开局之年,是改革开放40周年,距离实现2020年的脱贫目标也只有3年的时间。

Combinatorial game theory measures game complexity in several ways:

  1. State-space complexity (the number of legal game positions from the initial position)
  2. Game tree size (total number of possible games)
  3. Decision complexity (number of leaf nodes in the smallest decision tree for initial position)
  4. Game-tree complexity (number of leaf nodes in the smallest full-width decision tree for initial position)
  5. Computational complexity (asymptotic difficulty of a game as it grows arbitrarily large)

These measures involve understanding the game positions, possible outcomes, and computational complexity of various game scenarios.

Measures of game complexity

[edit]

State-space complexity

[edit]

The state-space complexity of a game is the number of legal game positions reachable from the initial position of the game.[1]

When this is too hard to calculate, an upper bound can often be computed by also counting (some) illegal positions (positions that can never arise in the course of a game).

Game tree size

[edit]

The game tree size is the total number of possible games that can be played. This is the number of leaf nodes in the game tree rooted at the game's initial position.

The game tree is typically vastly larger than the state-space because the same positions can occur in many games by making moves in a different order (for example, in a tic-tac-toe game with two X and one O on the board, this position could have been reached in two different ways depending on where the first X was placed). An upper bound for the size of the game tree can sometimes be computed by simplifying the game in a way that only increases the size of the game tree (for example, by allowing illegal moves) until it becomes tractable.

For games where the number of moves is not limited (for example by the size of the board, or by a rule about repetition of position) the game tree is generally infinite.

Decision trees

[edit]

A decision tree is a subtree of the game tree, with each position labelled "player A wins", "player B wins", or "draw" if that position can be proved to have that value (assuming best play by both sides) by examining only other positions in the graph. Terminal positions can be labelled directly—with player A to move, a position can be labelled "player A wins" if any successor position is a win for A; "player B wins" if all successor positions are wins for B; or "draw" if all successor positions are either drawn or wins for B. (With player B to move, corresponding positions are marked similarly.)

The following two methods of measuring game complexity use decision trees:

Decision complexity

[edit]

Decision complexity of a game is the number of leaf nodes in the smallest decision tree that establishes the value of the initial position.

Game-tree complexity

[edit]

Game-tree complexity of a game is the number of leaf nodes in the smallest full-width decision tree that establishes the value of the initial position.[1] A full-width tree includes all nodes at each depth. This is an estimate of the number of positions one would have to evaluate in a minimax search to determine the value of the initial position.

It is hard even to estimate the game-tree complexity, but for some games an approximation can be given by , where b is the game's average branching factor and d is the number of plies in an average game.

Computational complexity

[edit]

The computational complexity of a game describes the asymptotic difficulty of a game as it grows arbitrarily large, expressed in big O notation or as membership in a complexity class. This concept doesn't apply to particular games, but rather to games that have been generalized so they can be made arbitrarily large, typically by playing them on an n-by-n board. (From the point of view of computational complexity, a game on a fixed size of board is a finite problem that can be solved in O(1), for example by a look-up table from positions to the best move in each position.)

The asymptotic complexity is defined by the most efficient algorithm for solving the game (in terms of whatever computational resource one is considering). The most common complexity measure, computation time, is always lower-bounded by the logarithm of the asymptotic state-space complexity, since a solution algorithm must work for every possible state of the game. It will be upper-bounded by the complexity of any particular algorithm that works for the family of games. Similar remarks apply to the second-most commonly used complexity measure, the amount of space or computer memory used by the computation. It is not obvious that there is any lower bound on the space complexity for a typical game, because the algorithm need not store game states; however many games of interest are known to be PSPACE-hard, and it follows that their space complexity will be lower-bounded by the logarithm of the asymptotic state-space complexity as well (technically the bound is only a polynomial in this quantity; but it is usually known to be linear).

  • The depth-first minimax strategy will use computation time proportional to the game's tree-complexity (since it must explore the whole tree), and an amount of memory polynomial in the logarithm of the tree-complexity (since the algorithm must always store one node of the tree at each possible move-depth, and the number of nodes at the highest move-depth is precisely the tree-complexity).
  • Backward induction will use both memory and time proportional to the state-space complexity, as it must compute and record the correct move for each possible position.

Example: tic-tac-toe (noughts and crosses)

[edit]

For tic-tac-toe, a simple upper bound for the size of the state space is 39 = 19,683. (There are three states for each of the nine cells.) This count includes many illegal positions, such as a position with five crosses and no noughts, or a position in which both players have a row of three. A more careful count, removing these illegal positions, gives 5,478.[2][3] And when rotations and reflections of positions are considered identical, there are only 765 essentially different positions.

To bound the game tree, there are 9 possible initial moves, 8 possible responses, and so on, so that there are at most 9! or 362,880 total games. However, games may take less than 9 moves to resolve, and an exact enumeration gives 255,168 possible games. When rotations and reflections of positions are considered the same, there are only 26,830 possible games.

The computational complexity of tic-tac-toe depends on how it is generalized. A natural generalization is to m,n,k-games: played on an m by n board with winner being the first player to get k in a row. This game can be solved in DSPACE(mn) by searching the entire game tree. This places it in the important complexity class PSPACE; with more work, it can be shown to be PSPACE-complete.[4]

Complexities of some well-known games

[edit]

Due to the large size of game complexities, this table gives the ceiling of their logarithm to base 10. (In other words, the number of digits). All of the following numbers should be considered with caution: seemingly minor changes to the rules of a game can change the numbers (which are often rough estimates anyway) by tremendous factors, which might easily be much greater than the numbers shown.

Notes

[edit]
  1. ^ Double dummy bridge (i.e., double dummy problems in the context of contract bridge) is not a proper board game but has a similar game tree, and is studied in computer bridge. The bridge table can be regarded as having one slot for each player and trick to play a card in, which corresponds to board size 52. Game-tree complexity is a very weak upper bound: 13! to the power of 4 players regardless of legality. State-space complexity is for one given deal; likewise regardless of legality but with many transpositions eliminated. The last 4 plies are always forced moves with branching factor 1.

References

[edit]
  1. ^ a b c d e f g h i j k l Victor Allis (1994). Searching for Solutions in Games and Artificial Intelligence (PDF) (Ph.D. thesis). University of Limburg, Maastricht, The Netherlands. ISBN 90-900748-8-0.
  2. ^ "combinatorics - TicTacToe State Space Choose Calculation". Mathematics Stack Exchange. Retrieved 2025-08-14.
  3. ^ T, Brian (October 20, 2018). "Btsan/generate_tictactoe". GitHub. Retrieved 2025-08-14.
  4. ^ Stefan Reisch (1980). "Gobang ist PSPACE-vollst?ndig (Gobang is PSPACE-complete)". Acta Informatica. 13 (1): 59–66. doi:10.1007/bf00288536. S2CID 21455572.
  5. ^ a b c d Stefan Reisch (1981). "Hex ist PSPACE-vollst?ndig (Hex is PSPACE-complete)". Acta Inform (15): 167–191.
  6. ^ Slany, Wolfgang (2000). "The complexity of graph Ramsey games". In Marsland, T. Anthony; Frank, Ian (eds.). Computers and Games, Second International Conference, CG 2000, Hamamatsu, Japan, October 26-28, 2000, Revised Papers. Lecture Notes in Computer Science. Vol. 2063. Springer. pp. 186–203. doi:10.1007/3-540-45579-5_12.
  7. ^ a b c d e f H. J. van den Herik; J. W. H. M. Uiterwijk; J. van Rijswijck (2002). "Games solved: Now and in the future". Artificial Intelligence. 134 (1–2): 277–311. doi:10.1016/S0004-3702(01)00152-7.
  8. ^ Orman, Hilarie K. (1996). "Pentominoes: a first player win" (PDF). In Nowakowski, Richard J. (ed.). Games of No Chance: Papers from the Combinatorial Games Workshop held in Berkeley, CA, July 11–21, 1994. Mathematical Sciences Research Institute Publications. Vol. 29. Cambridge University Press. pp. 339–344. ISBN 0-521-57411-0. MR 1427975.
  9. ^ See van den Herik et al for rules.
  10. ^ John Tromp (2010). "John's Connect Four Playground".
  11. ^ Lachmann, Michael; Moore, Cristopher; Rapaport, Ivan (2002). "Who wins Domineering on rectangular boards?". In Nowakowski, Richard (ed.). More Games of No Chance: Proceedings of the 2nd Combinatorial Games Theory Workshop held in Berkeley, CA, July 24–28, 2000. Mathematical Sciences Research Institute Publications. Vol. 42. Cambridge University Press. pp. 307–315. ISBN 0-521-80832-4. MR 1973019.
  12. ^ Jonathan Schaeffer; et al. (July 6, 2007). "Checkers is Solved". Science. 317 (5844): 1518–1522. Bibcode:2007Sci...317.1518S. doi:10.1126/science.1144079. PMID 17641166. S2CID 10274228.
  13. ^ Schaeffer, Jonathan (2007). "Game over: Black to play and draw in checkers" (PDF). ICGA Journal. 30 (4): 187–197. doi:10.3233/ICG-2007-30402. Archived from the original (PDF) on 2025-08-14.
  14. ^ a b J. M. Robson (1984). "N by N checkers is Exptime complete". SIAM Journal on Computing. 13 (2): 252–267. doi:10.1137/0213018.
  15. ^ See Allis 1994 for rules
  16. ^ Bonnet, Edouard; Jamain, Florian; Saffidine, Abdallah (2013). "On the complexity of trick-taking card games". In Rossi, Francesca (ed.). IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013. IJCAI/AAAI. pp. 482–488.
  17. ^ M.P.D. Schadd; M.H.M. Winands; J.W.H.M. Uiterwijk; H.J. van den Herik; M.H.J. Bergsma (2008). "Best Play in Fanorona leads to Draw" (PDF). New Mathematics and Natural Computation. 4 (3): 369–387. doi:10.1142/S1793005708001124.
  18. ^ Andrea Galassi (2018). "An Upper Bound on the Complexity of Tablut".
  19. ^ a b G.I. Bell (2009). "The Shortest Game of Chinese Checkers and Related Problems". Integers. 9. arXiv:0803.1245. Bibcode:2008arXiv0803.1245B. doi:10.1515/INTEG.2009.003. S2CID 17141575.
  20. ^ a b Kasai, Takumi; Adachi, Akeo; Iwata, Shigeki (1979). "Classes of pebble games and complete problems". SIAM Journal on Computing. 8 (4): 574–586. doi:10.1137/0208046. MR 0573848. Proves completeness of the generalization to arbitrary graphs.
  21. ^ Iwata, Shigeki; Kasai, Takumi (1994). "The Othello game on an board is PSPACE-complete". Theoretical Computer Science. 123 (2): 329–340. doi:10.1016/0304-3975(94)90131-7. MR 1256205.
  22. ^ Robert Briesemeister (2009). Analysis and Implementation of the Game OnTop (PDF) (Thesis). Maastricht University, Dept of Knowledge Engineering.
  23. ^ Mark H.M. Winands (2004). Informed Search in Complex Games (PDF) (Ph.D. thesis). Maastricht University, Maastricht, The Netherlands. ISBN 90-5278-429-9.
  24. ^ The size of the state space and game tree for chess were first estimated in Claude Shannon (1950). "Programming a Computer for Playing Chess" (PDF). Philosophical Magazine. 41 (314). Archived from the original (PDF) on 2025-08-14. Shannon gave estimates of 1043 and 10120 respectively, smaller than the upper bound in the table, which is detailed in Shannon number.
  25. ^ Fraenkel, Aviezri S.; Lichtenstein, David (1981). "Computing a perfect strategy for chess requires time exponential in ". Journal of Combinatorial Theory, Series A. 31 (2): 199–214. doi:10.1016/0097-3165(81)90016-9. MR 0629595.
  26. ^ Gualà, Luciano; Leucci, Stefano; Natale, Emanuele (2014). "Bejeweled, Candy Crush and other match-three games are (NP-)hard". 2014 IEEE Conference on Computational Intelligence and Games, CIG 2014, Dortmund, Germany, August 26-29, 2014. IEEE. pp. 1–8. arXiv:1403.5830. doi:10.1109/CIG.2014.6932866.
  27. ^ Diederik Wentink (2001). Analysis and Implementation of the game Gipf (PDF) (Thesis). Maastricht University.
  28. ^ Chang-Ming Xu; Ma, Z.M.; Jun-Jie Tao; Xin-He Xu (2009). "Enhancements of proof number search in connect6". 2009 Chinese Control and Decision Conference. p. 4525. doi:10.1109/CCDC.2009.5191963. ISBN 978-1-4244-2722-2. S2CID 20960281.
  29. ^ Hsieh, Ming Yu; Tsai, Shi-Chun (October 1, 2007). "On the fairness and complexity of generalized k -in-a-row games". Theoretical Computer Science. 385 (1–3): 88–100. doi:10.1016/j.tcs.2007.05.031. Retrieved 2025-08-14 – via dl.acm.org.
  30. ^ Tesauro, Gerald (May 1, 1992). "Practical issues in temporal difference learning". Machine Learning. 8 (3–4): 257–277. doi:10.1007/BF00992697.
  31. ^ a b Shi-Jim Yen, Jr-Chang Chen; Tai-Ning Yang; Shun-Chin Hsu (March 2004). "Computer Chinese Chess" (PDF). International Computer Games Association Journal. 27 (1): 3–18. doi:10.3233/ICG-2004-27102. S2CID 10336286. Archived from the original (PDF) on 2025-08-14.
  32. ^ a b Donghwi Park (2015). "Space-state complexity of Korean chess and Chinese chess". arXiv:1507.06401 [math.GM].
  33. ^ Chorus, Pascal. "Implementing a Computer Player for Abalone Using Alpha-Beta and Monte-Carlo Search" (PDF). Dept of Knowledge Engineering, Maastricht University. Retrieved 2025-08-14.
  34. ^ Kopczynski, Jacob S (2014). Pushy Computing: Complexity Theory and the Game Abalone (Thesis). Reed College.
  35. ^ Joosten, B. "Creating a Havannah Playing Agent" (PDF). Retrieved 2025-08-14.
  36. ^ E. Bonnet; F. Jamain; A. Saffidine (March 25, 2014). "Havannah and TwixT are PSPACE-complete". arXiv:1403.6518 [cs.CC].
  37. ^ Kevin Moesker (2009). Txixt: Theory, Analysis, and Implementation (PDF) (Thesis). Faculty of Humanities and Sciences of Maastricht University.
  38. ^ Lisa Glendenning (May 2005). Mastering Quoridor (PDF). Computer Science (B.Sc. thesis). University of New Mexico. Archived from the original (PDF) on 2025-08-14.
  39. ^ Cathleen Heyden (2009). Implementing a Computer Player for Carcassonne (PDF) (Thesis). Maastricht University, Dept of Knowledge Engineering.
  40. ^ The lower branching factor is for the second player.
  41. ^ Kloetzer, Julien; Iida, Hiroyuki; Bouzy, Bruno (2007). "The Monte-Carlo approach in Amazons" (PDF). Computer Games Workshop, Amsterdam, the Netherlands, 15-17 June 2007. pp. 185–192.
  42. ^ P. P. L. M. Hensgens (2001). "A Knowledge-Based Approach of the Game of Amazons" (PDF). Universiteit Maastricht, Institute for Knowledge and Agent Technology.
  43. ^ R. A. Hearn (February 2, 2005). "Amazons is PSPACE-complete". arXiv:cs.CC/0502013.
  44. ^ Hiroyuki Iida; Makoto Sakuta; Jeff Rollason (January 2002). "Computer shogi". Artificial Intelligence. 134 (1–2): 121–144. doi:10.1016/S0004-3702(01)00157-6.
  45. ^ H. Adachi; H. Kamekawa; S. Iwata (1987). "Shogi on n × n board is complete in exponential time". Trans. IEICE. J70-D: 1843–1852.
  46. ^ F.C. Schadd (2009). Monte-Carlo Search Techniques in the Modern Board Game Thurn and Taxis (PDF) (Thesis). Maastricht University. Archived from the original (PDF) on 2025-08-14.
  47. ^ John Tromp; Gunnar Farneb?ck (2007). "Combinatorics of Go". This paper derives the bounds 48<log(log(N))<171 on the number of possible games N.
  48. ^ John Tromp (2016). "Number of legal Go positions".
  49. ^ "Statistics on the length of a go game".
  50. ^ J. M. Robson (1983). "The complexity of Go". Information Processing; Proceedings of IFIP Congress. pp. 413–417.
  51. ^ Christ-Jan Cox (2006). "Analysis and Implementation of the Game Arimaa" (PDF).
  52. ^ David Jian Wu (2011). "Move Ranking and Evaluation in the Game of Arimaa" (PDF).
  53. ^ Brian Haskin (2006). "A Look at the Arimaa Branching Factor".
  54. ^ A.F.C. Arts (2010). Competitive Play in Stratego (PDF) (Thesis). Maastricht.
  55. ^ CDA Evans and Joel David Hamkins (2014). "Transfinite game values in infinite chess". arXiv:1302.4377 [math.LO].
  56. ^ Stefan Reisch, Joel David Hamkins, and Phillipp Schlicht (2012). "The mate-in-n problem of infinite chess is decidable". Conference on Computability in Europe: 78–88. arXiv:1201.5597.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  57. ^ Alex Churchill, Stella Biderman, and Austin Herrick (2020). "Magic: the Gathering is Turing Complete". arXiv:1904.09828 [cs.AI].{{cite arXiv}}: CS1 maint: multiple names: authors list (link)
  58. ^ Stella Biderman (2020). "Magic: the Gathering is as Hard as Arithmetic". arXiv:2003.05119 [cs.AI].
  59. ^ Lokshtanov, Daniel; Subercaseaux, Bernardo (May 14, 2022). "Wordle is NP-hard". arXiv:2203.16713 [cs.CC].

See also

[edit]
[edit]
拔罐的原理是什么 西施是什么生肖 牙龈为什么会萎缩 什么叫性生活 西梅不能和什么一起吃
什么叫包皮过长 江米和糯米有什么区别 柏树长什么样子 梦见绿豆是什么意思 孕吐吃什么可以缓解
淄博有什么大学 乳头突然疼痛什么原因 挂号是什么意思 什么气组词 汲汲营营是什么意思
副高是什么意思 肝回声改变是什么意思 头皮起疙瘩是什么原因 吃什么助睡眠 嘴唇上长痣代表什么
长脸适合什么眼镜框hcv7jop4ns7r.cn 7月14日什么星座hcv9jop6ns6r.cn 打嗝不停吃什么药hcv7jop9ns7r.cn 高危hpv有什么症状hcv8jop6ns7r.cn 关门弟子是什么意思hcv9jop4ns8r.cn
梦游是什么意思hcv9jop5ns5r.cn 晚上梦见蛇是什么预兆hcv8jop3ns4r.cn 为什么明星不激光祛斑hcv9jop6ns5r.cn m标志是什么牌子衣服hcv8jop5ns6r.cn 吃豆腐是什么意思hcv8jop6ns9r.cn
三加一是什么意思hcv9jop2ns3r.cn 痛风不能吃什么食物表hcv9jop8ns2r.cn 鸡柳是什么肉hcv8jop1ns1r.cn 早上吃玉米有什么好处hcv8jop1ns5r.cn 干燥综合症挂什么科hcv7jop6ns9r.cn
随意是什么意思clwhiglsz.com 胸围110是什么罩杯hcv7jop9ns4r.cn 查血糖是什么检查项目hcv7jop4ns6r.cn 吃什么能养胃hcv8jop1ns7r.cn 不良资产是什么hebeidezhi.com
百度