黄茶是什么茶| 鱼肚是什么| 什么东西清肺止咳| 膝盖里面痛什么原因引起的| 蚩是什么意思| 幽门螺旋杆菌吃什么药最好| 不可抗力是什么意思| 诺诗兰属于什么档次| 突然呕吐是什么原因| ap是什么| 自来卷的头发适合什么发型| 手控是什么意思| 山姆是什么| 鸡尾酒是什么意思| 山楂干泡水喝有什么功效| 侧记是什么意思| 超敏c反应蛋白正常说明什么| 波长是什么| 庸医是什么意思| 什么样的情况下会怀孕| 产后漏尿是什么原因| 马来酸曲美布汀片什么时候吃| 吃什么润肠通便| 做梦梦见前男友是什么意思| 腹痛拉肚子吃什么药| 枕头太低了有什么危害| 楠字取名有什么寓意| 口臭去医院挂什么科室看病| 血压低头晕是什么原因导致的| 姨妈发黑量少什么原因| 荣膺是什么意思| 海豹油有什么作用| 弯的直的什么意思| 澳大利亚有什么动物| 肌酸激酶高是什么原因| 生物素是什么| 手长水泡是什么原因| 弄得什么| 肺炎不能吃什么| 鼓刹和碟刹有什么区别| 石斛有什么功效和作用| 百合花什么时候种植| 疝气是什么病怎样治疗| 男人吃什么增大增长| 第二名叫什么| 去医院打耳洞挂什么科| 睾丸萎缩是什么原因| 喝什么茶减肥| 脑出血什么症状| canyou是什么意思| 口臭用什么药| 家里养什么花最好| 裸眼视力是什么意思| 尿酸高可以喝什么饮料| pvs是什么意思| 吃什么油对心脑血管好| 一带一路指的是什么| 烫伤后擦什么药好得快| 气血亏虚什么症状| 胸闷是什么原因引起的| 新生儿吐奶是什么原因| 打太极是什么意思| 生酮是什么| 女人得性瘾什么症状| 小米叫什么| 黄字五行属什么| 宇宙之外还有什么| 小米可以和什么一起煮粥| 吃完龙虾不能吃什么| 血小板低吃什么补的快| 都市丽人是什么意思| 什么是匝道图片| 什么是外包| 嗓子干疼吃什么药| 西米是什么做成的| 孕妇前三个月吃什么对胎儿好| 鱼蛋是什么| 客之痣是什么意思| 吃什么水果能长高| 什么明月| 盆腔积液是什么原因| 有何指教是什么意思| 差是什么意思| 什么是平年什么是闰年| 砭石是什么石头| 1207是什么星座| 胃难受吃什么食物好| 阳痿什么意思| 摆拍是什么意思| 宋朝前面是什么朝代| 1.17是什么星座| 什么叫内分泌失调是什么意思| 及是什么意思| 回锅肉是什么肉| 24k是什么意思| 等离子体是什么| 傲娇是什么意思| 糖尿病人适合吃什么水果| 康膜的功效是什么| 嘴巴臭是什么原因| 潘驴邓小闲什么意思| 北上广是什么意思| 窦性心律不齐吃什么药| 耳廓有痣代表什么| 什么人不适合做业务员| 脸部爱出油是什么原因| 喝咖啡有什么好处和坏处| 陌上花开可缓缓归矣什么意思| 眼睛流眼泪用什么眼药水| 官杀旺是什么意思| 36岁属什么生肖| 自身免疫性疾病是什么意思| 智五行属什么| 73岁属什么| 过敏性紫癜是什么症状| 加息是什么意思| 申五行属什么| 属马的本命佛是什么佛| 墨鱼干和什么煲汤最好| 蜂蜜和柠檬一起喝有什么作用| 静脉曲张吃什么药| 露酒是什么意思| 三焦热盛是什么意思| 什么的形象| 冬天送什么礼物| 孕妇上火了吃什么降火最快| 小狗拉稀 吃什么药| 苏轼是什么朝代的| 天津是什么省| 白茶是什么茶| 6.29是什么星座| 水变成冰为什么体积变大| 子宫薄是什么原因造成的| bart是什么意思| 2023是什么年| pa是什么材质| 为什么会突然得荨麻疹| 灵敏度是什么意思| 石花膏是什么做的| 洗脑是什么意思| 农历六月六是什么节日| 下巴起痘痘是什么原因| 梦见偷菜是什么意思| 免疫十一项都检查什么| 梦见自己掉头发是什么意思| 作壁上观什么意思| 雨中漫步是什么意思| 氯雷他定不能和什么药一起吃| 恢复伤口吃什么好得快| 苎麻是什么面料| 脚心发热吃什么药| 电泳是什么| 什么的色彩| 指甲挂什么科| 发改局是做什么的| 嘴角疱疹用什么药膏| 24k是什么意思| 舌裂吃什么药| 什么是黄油| gn是什么意思| 正月初一是什么节日| 本是同根生相煎何太急是什么意思| 风疹吃什么药| 钟是什么意思| 苦荞茶喝了有什么好处| 世界大同是什么意思| 虚岁28岁属什么生肖| 肾衰竭是什么意思| 打磨工为什么没人干| 外阴过敏用什么药| 虢是什么意思| 吃什么才能瘦下来| 晕3d什么症状| 牙髓炎是什么原因引起的| 断章取义什么意思| 请结合临床是什么意思| 一什么冰雹| 后循环缺血吃什么药| 油炸食品用什么油最好| 什么是墨菲定律| 日本料理都有什么菜| 蝉代表什么生肖| 感触什么意思| 枕芯用什么填充物好| 什么是中位数| 大学辅导员是干什么的| 服中药期间忌吃什么| 咲念什么| 悦五行属性是什么| 唐氏是什么意思| 头发长的慢是什么原因| 高血脂是什么意思| 老人经常头晕是什么原因引起的| 鳄鱼吃什么| 专注力是什么意思| 南方有什么水果| boxing是什么意思| 带状疱疹一般长在什么地方| 健忘症是什么意思| 孩子容易出汗是什么原因| 囊肿长什么样子图片| 蟑螂喜欢什么样的环境| 平血头晕吃什么药最好| 脚趾头麻木是什么原因引起的| 7.17什么星座| b3是什么维生素| 相位是什么意思| 2月12日什么星座| 洛阳有什么山| 挂号是什么意思| 5月12日什么星座| 什么时间容易怀孕| 96166是什么电话| 开口腔诊所需要什么条件| 英语介词是什么意思| 查生育能力挂什么科| 睿字五行属什么| 俄罗斯用什么货币| 三月十二是什么星座| 散漫是什么意思| 什么是胎记| 蛇盘疮长什么样| 尿常规红细胞高是什么原因| 总是失眠是什么原因| 长河落日圆什么意思| 魂穿是什么意思| 蓝色加红色等于什么颜色| 宫颈糜烂有什么症状| 印度人属于什么人种| 猫咪发烧吃什么药| 皮炎是什么| 异物进入气管什么症状| 无赖不还钱最怕什么| 419什么意思| hbeag是什么意思| 女生什么时候最容易怀孕| 福禄寿的禄是什么意思| dvt是什么意思| 鸡蛋液是什么| 日龙包是什么意思| 龙胆泻肝丸治什么病| picc是什么| 阴道是什么味道| 日加华读什么| 下海是什么意思| 小狗吐白沫不吃东西没精神吃什么药| 胚胎生化是什么意思| 米线里的麻油是什么油| 吸入物变应原筛查是什么| 孕妇梦见下雨是什么意思| 什么叫翡翠| 脑缺血灶是什么意思| 吸烟有害健康为什么国家还生产烟| 宝宝感冒流鼻涕吃什么药| 不超过是什么意思| 蒲公英泡水喝有什么副作用| 六味地黄丸什么时候吃| 光杆司令是什么意思| 月经淋漓不尽吃什么药| 无限极是干什么的| 钦点是什么意思| 什么是冷战| 昕字取名什么寓意| 血管紧张素是什么意思| 百度Jump to content

宁波女警用画笔绘出最诗意的母爱

From Wikipedia, the free encyclopedia
A Büchi automaton
A Büchi automaton with two states, and , the former of which is the start state and the latter of which is accepting. Its inputs are infinite words over the symbols . As an example, it accepts the infinite word , where denotes the infinite repetition of a string . It rejects the infinite word .
百度 "在我来到一汽丰田的半年多时间里,最先了解到的是小型车战略和年轻化战略,这两项工作是一汽丰田这几年工作的重心,未来还将继续下去。

In computer science and automata theory, a deterministic Büchi automaton is a theoretical machine which either accepts or rejects infinite inputs. Such a machine has a set of states and a transition function, which determines which state the machine should move to from its current state when it reads the next input character. Some states are accepting states and one state is the start state. The machine accepts an input if and only if it will pass through an accepting state infinitely many times as it reads the input.

A non-deterministic Büchi automaton, later referred to just as a Büchi automaton, has a transition function which may have multiple outputs, leading to many possible paths for the same input; it accepts an infinite input if and only if some possible path is accepting. Deterministic and non-deterministic Büchi automata generalize deterministic finite automata and nondeterministic finite automata to infinite inputs. Each are types of ω-automata. Büchi automata recognize the ω-regular languages, the infinite word version of regular languages. They are named after the Swiss mathematician Julius Richard Büchi, who invented them in 1962.[1]

Büchi automata are often used in model checking as an automata-theoretic version of a formula in linear temporal logic.

Formal definition

[edit]

Formally, a deterministic Büchi automaton is a tuple A = (Q,Σ,δ,q0,F) that consists of the following components:

  • Q is a finite set. The elements of Q are called the states of A.
  • Σ is a finite set called the alphabet of A.
  • δ: Q × Σ → Q is a function, called the transition function of A.
  • q0 is an element of Q, called the initial state of A.
  • F?Q is the acceptance condition. A accepts exactly those runs in which at least one of the infinitely often occurring states is in F.

In a (non-deterministic) Büchi automaton, the transition function δ is replaced with a transition relation Δ that returns a set of states, and the single initial state q0 is replaced by a set I of initial states. Generally, the term Büchi automaton without qualifier refers to non-deterministic Büchi automata.

For more comprehensive formalism see also ω-automaton.

Closure properties

[edit]

The set of Büchi automata is closed under the following operations.

Let and be Büchi automata and be a finite automaton.

  • Union: There is a Büchi automaton that recognizes the language
Proof: If we assume, w.l.o.g., is empty then is recognized by the Büchi automaton
  • Intersection: There is a Büchi automaton that recognizes the language
Proof: The Büchi automaton recognizes where
By construction, is a run of automaton A' on input word w if is run of A on w and is run of B on w. is accepting and is accepting if r' is concatenation of an infinite series of finite segments of 1-states (states with third component 1) and 2-states (states with third component 2) alternatively. There is such a series of segments of r' if r' is accepted by A'.
  • Concatenation: There is a Büchi automaton that recognizes the language
Proof: If we assume, w.l.o.g., is empty then the Büchi automaton recognizes , where
  • ω-closure: If does not contain the empty word then there is a Büchi automaton that recognizes the language
Proof: The Büchi automaton that recognizes is constructed in two stages. First, we construct a finite automaton A' such that A' also recognizes but there are no incoming transitions to initial states of A'. So, where Note that because does not contain the empty string. Second, we will construct the Büchi automaton A" that recognize by adding a loop back to the initial state of A'. So, , where
  • Complementation:There is a Büchi automaton that recognizes the language
Proof: The proof is presented here.

Recognizable languages

[edit]

Büchi automata recognize the ω-regular languages. Using the definition of ω-regular language and the above closure properties of Büchi automata, it can be easily shown that a Büchi automaton can be constructed such that it recognizes any given ω-regular language. For converse, see construction of a ω-regular language for a Büchi automaton.

Deterministic versus non-deterministic Büchi automata

[edit]
A non-deterministic Büchi automaton that recognizes ??

The class of deterministic Büchi automata does not suffice to encompass all omega-regular languages. In particular, there is no deterministic Büchi automaton that recognizes the language ??, which contains exactly words in which 1 occurs only finitely many times. We can demonstrate it by contradiction that no such deterministic Büchi automaton exists. Let us suppose A is a deterministic Büchi automaton that recognizes ?? with final state set F. A accepts ??. So, A will visit some state in F after reading some finite prefix of ??, say after the ??th letter. A also accepts the ω-word Therefore, for some ??, after the prefix the automaton will visit some state in F. Continuing with this construction the ω-word is generated which causes A to visit some state in F infinitely often and the word is not in ?? Contradiction.

The class of languages recognizable by deterministic Büchi automata is characterized by the following lemma.

Lemma: An ω-language is recognizable by a deterministic Büchi automaton if it is the limit language of some regular language.
Proof: Any deterministic Büchi automaton A can be viewed as a deterministic finite automaton A' and vice versa, since both types of automaton are defined as 5-tuple of the same components, only the interpretation of acceptance condition is different. We will show that ?? is the limit language of ??. An ω-word is accepted by A if it will force A to visit final states infinitely often. Thus, infinitely many finite prefixes of this ω-word will be accepted by A'. Hence, ?? is a limit language of ??.

Algorithms

[edit]

Model checking of finite state systems can often be translated into various operations on Büchi automata. In addition to the closure operations presented above, the following are some useful operations for the applications of Büchi automata.

Determinization

Since deterministic Büchi automata are strictly less expressive than non-deterministic automata, there can not be an algorithm for determinization of Büchi automata. But, McNaughton's Theorem and Safra's construction provide algorithms that can translate a Büchi automaton into a deterministic Muller automaton or deterministic Rabin automaton.[2]

Emptiness checking

The language recognized by a Büchi automaton is non-empty if and only if there is a final state that is both reachable from the initial state, and lies on a cycle.

An effective algorithm that can check emptiness of a Büchi automaton:

  1. Consider the automaton as a directed graph and decompose it into strongly connected components (SCCs).
  2. Run a search (e.g., the depth-first search) to find which SCCs are reachable from the initial state.
  3. Check whether there is a non-trivial SCC that is reachable and contains a final state.

Each of the steps of this algorithm can be done in time linear in the automaton size, hence the algorithm is clearly optimal.

Minimization

Minimizing deterministic Büchi automata (i.e., given a deterministic Büchi automaton, finding a deterministic Büchi automaton recognizing the same language with a minimal number of states) is an NP-complete problem.[3] This is in contrast to DFA minimization, which can be done in polynomial time.

Variants

[edit]

Transforming from other models of description to non-deterministic Büchi automata

[edit]
Multiple sets of states in acceptance condition can be translated into one set of states by an automata construction, which is known as "counting construction". Let's say A = (Q,Σ,?,q0,{F1,...,Fn}) is a GBA, where F1,...,Fn are sets of accepting states then the equivalent Büchi automaton is A' = (Q', Σ, ?',q'0,F'), where
  • Q' = Q × {1,...,n}
  • q'0 = ( q0,1 )
  • ?' = { ( (q,i), a, (q',j) ) | (q,a,q') ∈ ? and if q ∈ Fi then j=((i+1) mod n) else j=i }
  • F'=F1× {1}
A translation from a Linear temporal logic formula to a generalized Büchi automaton is given here. And, a translation from a generalized Büchi automaton to a Büchi automaton is presented above.
A given Muller automaton can be transformed into an equivalent Büchi automaton with the following automata construction. Let's suppose A = (Q,Σ,?,Q0,{F0,...,Fn}) is a Muller automaton, where F0,...,Fn are sets of accepting states. An equivalent Büchi automaton is A' = (Q', Σ, ?',Q0,F'), where
  • Q' = Q ∪  ni=0 {i} × Fi × 2Fi
  • ?'= ? ∪ ?1 ∪ ?2, where
    • ?1 ={ ( q, a, (i,q',?) ) | (q, a, q') ∈ ? and q' ∈ Fi }
    • ?2={ ( (i,q,R), a, (i,q',R') ) | (q,a,q')∈? and q,q' ∈ Fi and if R=Fi then R'= ? otherwise R'=R∪{q} }
  • F'=ni=0 {i} × Fi × {Fi}
A' keeps original set of states from A and adds extra states on them. The Büchi automaton A' simulates the Muller automaton A as follows: At the beginning of the input word, the execution of A' follows the execution of A, since initial states are same and ?' contains ?. At some non-deterministically chosen position in the input word, A' decides of jump into newly added states via a transition in ?1. Then, the transitions in ?2 try to visit all the states of Fi and keep growing R. Once R becomes equal to Fi then it is reset to the empty set and ?2 try to visit all the states of Fi states again and again. So, if the states R=Fi are visited infinitely often then A' accepts corresponding input and so does A. This construction closely follows the first part of the proof of McNaughton's Theorem.

From Kripke structures

[edit]
Let the given Kripke structure be defined by M = ?Q, I, R, L, AP? where Q is the set of states, I is the set of initial states, R is a relation between two states also interpreted as an edge, L is the label for the state and AP are the set of atomic propositions that form L.
The Büchi automaton will have the following characteristics:
if (q, p) belongs to R and L(p) = a
and init q if q belongs to I and L(q) = a.
Note however that there is a difference in the interpretation between Kripke structures and Büchi automata. While the former explicitly names every state variable's polarity for every state, the latter just declares the current set of variables holding or not holding true. It says absolutely nothing about the other variables that could be present in the model.

Complementation

[edit]

In automata theory, complementation of a Büchi automaton is the task of complementing a Büchi automaton, i.e., constructing another automaton that recognizes the complement of the ω-regular language recognized by the given Büchi automaton. Existence of algorithms for this construction proves that the set of ω-regular languages is closed under complementation.

This construction is particularly hard relative to the constructions for the other closure properties of Büchi automata. The first construction was presented by Büchi in 1962.[4] Later, other constructions were developed that enabled efficient and optimal complementation.[5][6][7][8][9]

Büchi's construction

[edit]

Büchi presented[4] a doubly exponential complement construction in a logical form. Here, we have his construction in the modern notation used in automata theory. Let A = (Q,Σ,Δ,Q0,F) be a Büchi automaton. Let ~A be an equivalence relation over elements of Σ+ such that for each v,w ∈ Σ+, v ~A w if and only if for all p,qQ, A has a run from p to q over v if and only if this is possible over w and furthermore A has a run via F from p to q over v if and only if this is possible over w. Each class of ~A defines a map f:Q → 2Q × 2Q in the following way: for each state pQ, we have (Q1,Q2)= f(p), where Q1 = {qQ | w can move automaton A from p to q} and Q2 = {qQ | w can move automaton A from p to q via a state in F}. Note that Q2 ? Q1. If f is a map definable in this way, we denote the (unique) class defining f by Lf.

The following three theorems provide a construction of the complement of A using the equivalence classes of ~A.

Theorem 1: ~A has finitely many equivalent classes and each class is a regular language.
Proof: Since there are finitely many f:Q → 2Q × 2Q, the relation ~A has finitely many equivalence classes. Now we show that Lf is a regular language. For p,qQ and i ∈ {0,1}, let Ai,p,q = ( {0,1}×Q, Σ, Δ1∪Δ2, {(0,p)}, {(i,q)} ) be a nondeterministic finite automaton, where Δ1 = { ((0,q1),(0,q2)) | (q1,q2) ∈ Δ} ∪ { ((1,q1),(1,q2)) | (q1,q2) ∈ Δ}, and Δ2 = { ((0,q1),(1,q2)) | q1F ∧ (q1,q2) ∈ Δ }. Let Q' ? Q. Let αp,Q' = ∩{ L(A1,p,q) | q ∈ Q'}, which is the set of words that can move A from p to all the states in Q' via some state in F. Let βp,Q' = ∩{ L(A0,p,q)-L(A1,p,q)-{ε} | q ∈ Q'}, which is the set of non-empty words that can move A from p to all the states in Q' and does not have a run that passes through any state in F. Let γp,Q' = ∩{ Σ+-L(A0,p,q) | q ∈ Q'}, which is the set of non-empty words that cannot move A from p to any of the states in Q'. Since the regular languages are closed under finite intersections and under relative complements, every αp,Q', βp,Q', and γp,Q' is regular. By definitions, Lf = ∩{ αp,Q2∩ βp,Q1-Q2∩ γp,Q-Q1 | (Q1,Q2)=f(p) ∧ pQ}.

Theorem 2: For each w ∈ Σω, there are ~A classes Lf and Lg such that wLf(Lg)ω.
Proof: We will use the infinite Ramsey theorem to prove this theorem. Let w =a0a1... and w(i,j) = ai...aj-1. Consider the set of natural numbers N. Let equivalence classes of ~A be the colors of subsets of N of size 2. We assign the colors as follows. For each i < j, let the color of {i,j} be the equivalence class in which w(i,j) occurs. By the infinite Ramsey theorem, we can find an infinite set X ? N such that each subset of X of size 2 has same color. Let 0 < i0 < i1 < i2 .... ∈ X. Let f be a defining map of an equivalence class such that w(0,i0) ∈ Lf. Let g be a defining map of an equivalence class such that for each j>0,w(ij-1,ij) ∈ Lg. Then wLf(Lg)ω.

Theorem 3: Let Lf and Lg be equivalence classes of ~A. Then Lf(Lg)ω is either a subset of L(A) or disjoint from L(A).
Proof: Suppose there is a word wL(A) ∩ Lf(Lg)ω, otherwise the theorem holds trivially. Let r be an accepting run of A over input w. We need to show that each word w' ∈ Lf(Lg)ω is also in L(A), i.e., there exists a run r' of A over input w' such that a state in F occurs in r' infinitely often. Since wLf(Lg)ω, let w0w1w2... = w such that w0Lf and for each i > 0, wiLg. Let si be the state in r after consuming w0...wi. Let I be a set of indices such that iI if and only if the run segment in r from si to si+1 contains a state from F. I must be an infinite set. Similarly, we can split the word w'. Let w'0w'1w'2... = w' such that w'0Lf and for each i > 0, w'iLg. We construct r' inductively in the following way. Let the first state of r' be same as r. By definition of Lf, we can choose a run segment on word w'0 to reach s0. By induction hypothesis, we have a run on w'0...w'i that reaches to si. By definition of Lg, we can extend the run along the word segment w'i+1 such that the extension reaches si+1 and visits a state in F if iI. The r' obtained from this process will have infinitely many run segments containing states from F, since I is infinite. Therefore, r' is an accepting run and w' ∈ L(A).

By the above theorems, we can represent Σω-L(A) as finite union of ω-regular languages of the form Lf(Lg)ω, where Lf and Lg are equivalence classes of ~A. Therefore, Σω-L(A) is an ω-regular language. We can translate the language into a Büchi automaton. This construction is doubly exponential in terms of size of A.

References

[edit]
  1. ^ Büchi, J.R. (1962). "On a Decision Method in Restricted Second Order Arithmetic". The Collected Works of J. Richard Büchi. Stanford: Stanford University Press. pp. 425–435. doi:10.1007/978-1-4613-8928-6_23. ISBN 978-1-4613-8930-9. {{cite book}}: ISBN / Date incompatibility (help); |journal= ignored (help)
  2. ^ Safra, S. (1988), "On the complexity of ω-automata", Proceedings of the 29th Annual Symposium on Foundations of Computer Science (FOCS '88), Washington DC, US: IEEE Computer Society, pp. 319–327, doi:10.1109/SFCS.1988.21948, ISBN 0-8186-0877-3, S2CID 206559211.
  3. ^ Schewe, Sven (2010). "Minimisation of Deterministic Parity and Büchi Automata and Relative Minimisation of Deterministic Finite Automata". arXiv:1007.1333 [cs.FL].
  4. ^ a b Büchi, J. R. (1962), "On a decision method in restricted second order arithmetic", Proc. International Congress on Logic, Method, and Philosophy of Science, Stanford, 1960, Stanford: Stanford University Press, pp. 1–12.
  5. ^ McNaughton, R. (1966), "Testing and generating infinite sequences by a finite automaton", Information and Control, 9 (5): 521–530, doi:10.1016/s0019-9958(66)80013-x.
  6. ^ Sistla, A. P.; Vardi, M. Y.; Wolper, P. (1987), "The complementation problem for Büchi automata with applications to temporal logic", Theoretical Computer Science, 49 (2–3): 217–237, doi:10.1016/0304-3975(87)90008-9.
  7. ^ Safra, S. (October 1988), "On the complexity of ω-automata", Proc. 29th IEEE Symposium on Foundations of Computer Science, White Plains, New York, pp. 319–327.
  8. ^ Kupferman, O.; Vardi, M. Y. (July 2001), "Weak alternating automata are not that weak", ACM Transactions on Computational Logic, 2 (3): 408–429, doi:10.1145/377978.377993.
  9. ^ Schewe, Sven (2009). Büchi Complementation Made Tight. STACS.
[edit]
胃不好吃什么好 避免是什么意思 牙齿出血是什么病征兆 办健康证在什么地方办 胃粘膜脱落什么症状严重吗
斋醮是什么意思 孕妇贫血有什么症状 眼角痒用什么药 吃什么皮肤变白 秋葵有什么营养价值
芭蕉和香蕉有什么区别 血糖降不下来是什么原因导致 肚子里面跳动是什么原因 情人节送妈妈什么花 一什么门牙
七十岁老人装什么牙合适 一个土一个阜念什么 肛门出血什么原因 黑龙江有什么特产 什么是uv
吃什么药能来月经hcv7jop7ns4r.cn 胃溃疡十二指肠溃疡吃什么药hcv8jop0ns4r.cn 透析是什么原理hcv9jop3ns8r.cn 导乐是什么意思hcv7jop5ns4r.cn 潦草什么意思hcv8jop1ns1r.cn
gc是什么意思hcv8jop1ns7r.cn 预估是什么意思jingluanji.com 见红是什么意思hcv9jop4ns3r.cn 用什么药膏能拔去粉瘤hcv9jop6ns8r.cn 蝎子吃什么东西hcv9jop5ns6r.cn
吨位是什么意思hcv7jop9ns6r.cn 金主是什么意思hcv8jop6ns5r.cn 舌根发黄是什么原因造成的naasee.com 中子是什么hcv9jop5ns1r.cn 双肺纹理增多增粗是什么病hcv9jop1ns5r.cn
辅酶q10是什么jingluanji.com 甲状腺2类是什么意思xinmaowt.com 双鱼女和什么座最配对hcv9jop4ns1r.cn 贝五行属什么hcv8jop6ns9r.cn 横空出世是什么意思hcv9jop4ns8r.cn
百度